TeComp

Fractals

Vladimír Janiš

Matej Bel University
Banska Bystrica, Slovakia
May, 2019

Are these images similar?

Some similarity?

Coast line (artificial)

Some mathematics

- $2^{3}=8 \quad \log _{2} 8=3$
- $2^{4}=16 \quad \log _{2} 16=4$
- $2^{10}=1024 \log _{2} 1024=10$
- $2^{\mathrm{x}}=\mathrm{y} \quad \log _{2} \mathrm{y}=\mathrm{x}$

More mathematics

$$
\begin{aligned}
& 0<q<1: \\
& 1+q+q^{2}+q^{3}+\ldots+q^{n}+\ldots=1 /(1-q) \\
& 1+q+q^{2}+q^{3}+\ldots+q^{n}+\ldots=S \\
& 1+q+q^{2}+q^{3}+\ldots+q^{n}+\ldots= \\
& \quad=1+q\left(1+q+q^{2}+q^{3}+\ldots+q^{n}+\ldots\right) \\
& S=1+q S \\
& S-q S=1 \\
& S(1-q)=1 \\
& S=1 /(1-q)
\end{aligned}
$$

Homothety

ABC \square DEF
 $\mathrm{k}=\mathrm{OE} / \mathrm{OB}$
 (about 3/2)

DEF $\square \mathrm{ABC}$ k = OB/OE
(about 2/3)
k > 1 - enlargement
$\mathrm{k}<1$ - shrinking

The dimension

M - a set
$f_{1}, f_{2}, \ldots f_{p}$ - homotheties with coefficient k $M=U f_{p}(M)$
-Dimension of $M: d=\log p / \log (1 / k)$

Simple cases

- a line segment
- $p=2, k=1 / 2$
- the dimension is $d=\log 2 / \log 2=1$
- a rectangle
- $p=4, k=1 / 2$

- the dimension is $d=\log 4 / \log 2=2$

The Sierpinski triangle

inside

The area of the Sierpinski triangle

- The area of the original triangle: 1
- Step 1: $1 / 4$ cut away
- Step 2: $3^{*}(1 / 4 * 1 / 4)$ cut away
- Step 3: $3 * 3^{*}(1 / 4 * 1 / 4 * 1 / 4)$ cut away
.......... etc
- $1 / 4+3^{*}(1 / 4 * 1 / 4)+3^{*} 3^{*}(1 / 4 * 1 / 4 * 1 / 4)+\ldots=$
$=1 / 4\left[1+3^{*}(1 / 4)+3^{*} 3^{*}(1 / 4 * 1 / 4)+\ldots\right]=$
$=1 / 4^{*}\left[1+(3 / 4)+(3 / 4)^{2}+\ldots\right]=1 / 4 * 1 /(1-3 / 4)=1$

Zero area remaining?????

- Is the Sierpinski triangle a line?
- What is the difference between an are and a line?

DIMENSION!!!!

Dimension of the Sierpinski triangle

- $\mathrm{p}=3$
- $k=1 / 2$
- $p=2, k=1 / 2$
- the dimension is
$d=\log 3 / \log 2 \cong 1.58$

Fractals

- sets for which their dimension is NOT an integer
- typical property - a part is similar to the whole set (self-similarity)
- 1975

Repeating patterns

- Koch curve

The length of the Koch curve

0	1	2	3	4
1	$4 / 3$	$4^{*}\left(4 /\left(3^{*} 3\right)\right)=16 / 9$	$4^{*} 4^{*}\left(4 /\left(3^{*} 3^{*} 3\right)\right)=4^{3} / 3^{3}$	$4^{4} / 3^{4}$

length in the n-th step: $(4 / 3)^{n}$

The Koch curve

- it is infinitely long
- each its part is infinitely long
- has not a tangent line (at no its point)
- dimension $\cong 1.261$

Fractal elements in the art

- https://www.youtube.com/watch?v=rRgXUFnfKIY

The Koch snowflake

- infinitely long
- bounds a finite area

The last piece of mathematics

$$
\begin{aligned}
& =z_{0}=0, z_{n+1}=z_{n}{ }^{2}+c \\
& c=1 \text { : }
\end{aligned}
$$

$$
z_{0}=0, z_{1}=1, z_{2}=2, z_{3}=5, z_{4}=26, \ldots
$$

$$
c=-0.5
$$

$$
z_{0}=0, z_{1}=-0.5, z_{2}=-0.25, z_{3}=-0.4375, z_{4}=-0.308, \ldots
$$

For some c the sequence goes to infinity, for some not.

The Mandelbrot set

- The set of those c (in the complex plane) for which the sequence does NOT go to infinity

The Mandelbrot set

http://www.youtube.com/watch?v=0jGaio87u3A

