

Fractals

Vladimír Janiš

Matej Bel University Banska Bystrica, Slovakia May, 2019

Are these images similar?

Some similarity?

Coast line (artificial)

Some mathematics

•
$$2^3 = 8$$
 $\log_2 8 = 3$
• $2^4 = 16$ $\log_2 16 = 4$
• $2^{10} = 1024 \log_2 1024 = 10$

$$2^{x} = y \quad \log_{2} y = x$$

More mathematics

$$1 + q + q^{2} + q^{3} + \dots + q^{n} + \dots = S$$

$$1 + q + q^{2} + q^{3} + \dots + q^{n} + \dots =$$

$$= 1 + q(1 + q + q^{2} + q^{3} + \dots + q^{n} + \dots)$$

$$S = 1 + qS$$

$$S - qS = 1$$

$$S(1-q) = 1$$

$$S = 1/(1-q)$$

Homothety

ABC \Box DEF k = OE/OB (about 3/2)

DEF \Box ABC k = OB/OE (about 2/3)

k > 1 – enlargement k < 1 – shrinking

The dimension

M - a set $f_1, f_2, ..., f_p - homotheties with coefficient k$ $M = U f_p(M)$

Dimension of M: d = log p / log (1/k)

Simple cases

- a line segment
- p = 2, k = 1/2

• the dimension is $d = \log 4 / \log 2 = 2$

The Sierpinski triangle

The area of the Sierpinski triangle

- The area of the original triangle: 1
- Step 1: $\frac{1}{4}$ cut away
- Step 2: 3*(¹/₄ * ¹/₄) cut away
- Step 3: 3*3*(1/4 * 1/4 * 1/4) cut away

..... etc

 $\frac{1}{4} + 3^{*}(\frac{1}{4} + \frac{1}{4}) + 3^{*}3^{*}(\frac{1}{4} + \frac{1}{4}) + \dots = \frac{1}{4} [1 + 3^{*}(\frac{1}{4}) + 3^{*}3^{*}(\frac{1}{4} + \frac{1}{4}) + \dots] = \frac{1}{4} [1 + (\frac{3}{4}) + (\frac{3}{4})^{2} + \dots] = \frac{1}{4} + \frac{1}{(1 - \frac{3}{4})} = 1$

Zero area remaining????

- Is the Sierpinski triangle a line?
- What is the difference between an are and a line?

DIMENSION!!!!

Dimension of the Sierpinski triangle

- p = 3
- k = 1/2
- p = 2, k = 1/2
- the dimension is

d = log 3 / log 2 ≅ 1.58

Fractals

- sets for which their dimension is NOT an integer
- typical property a part is similar to the whole set (self-similarity)

1975

Repeating patterns

Koch curve

The length of the Koch curve

0	1	2	3	4
1	4/3	4*(4/(3*3))=16/9	4*4*(4/(3*3*3))=4 ³ / 3 ³	4 ⁴ / 3 ⁴

length in the n-th step: (4/3)ⁿ

The Koch curve

- it is infinitely long
- each its part is infinitely long
- has not a tangent line (at no its point)
- dimension ≅ 1.261

Fractal elements in the art

https://www.youtube.com/watch?v=rRgXUFnfKIY

The Koch snowflake

infinitely long
bounds a finite area

The last piece of mathematics

$$z_{0} = 0, z_{n+1} = z_{n}^{2} + c$$

$$c = 1:$$

$$z_{0} = 0, z_{1} = 1, z_{2} = 2, z_{3} = 5, z_{4} = 26, ...$$

$$c = -0.5$$

$$z_{0} = 0, z_{1} = -0.5, z_{2} = -0.25, z_{3} = -0.4375, z_{4} = -0.308,...$$

For some c the sequence goes to infinity, for some not.

The Mandelbrot set

The set of those c (in the complex plane) for which the sequence does NOT go to infinity

The Mandelbrot set

http://www.youtube.com/watch?v=0jGaio87u3A

