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Abstract. Positive decreasing solutions of the nonlinear difference equation

∆(pn|∆xn|α−1∆xn) = qn|xn+1|β−1xn+1, n ≥ 1, α > β > 0,

are studied under the assumption that p, q are regularly varying sequences. Necessary and sufficient
conditions are established for the existence of regularly varying strongly decreasing solutions and it is
shown that the asymptotic behavior of all such solutions is governed by a unique formula.

1. Introduction

Consider the nonlinear difference equation of second order

(E) ∆(pn|∆xn|α−1∆xn) = qn|xn+1|β−1xn+1, n ≥ 1,

where α and β are positive constants such that α > β, p = {pn}, q = {qn} are positive real sequences and ∆
is forward difference operator defined as ∆xn = xn+1 − xn. In our case, when α > β, equation (E) is said to
be sub-half-linear, while otherwise, for α = β or α < β equation (E) is called half-linear or super-half-linear,
respectively.

By a solution of (E) we mean a not trivial real sequence x = {xn} satisfying (E). A solution x of the
equation (E) is called oscillatory if for every M ∈ N there exist m,n ∈ N, M ≤ m < n such that xmxn < 0,
otherwise, it is called nonoscillatory. In other words, a solution x is called nonoscillatory if it is eventually
positive or eventually negative. It is known that every solution of (E) is nonoscillatory. If x = {xn} is a
solution of (E), then clearly −x = {−xn} is also a solution. Thus, in studying nonoscillatory solutions of (E),
for the sake of simplicity, we restrict ourself to solutions which are eventually positive. Any such solution
{xn} is eventually strongly monotone and belongs to one of the two classes listed below (see [6, Lemma 1]):

M
+ = {x solution of (E) | ∃n0 ≥ 1 : xn > 0, ∆xn > 0, for n ≥ n0} ,

M
− = {x solution of (E) | xn > 0, ∆xn < 0, for n ≥ 1} .
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1 Introduction

Good morning. How are you doing? (Answer) OK, let’s begin. Today, I am going to talk
about Emden-Fowler type difference equation. This type of equation we have already ob-
serve, but in the continuous case. Now, we move to the discrete case. Why is this equation
important? As we said in previous classes, differential equations play an important role in
modeling almost all physical, technical or biological processes from celestial motion through
bridge design to interaction between neurons. Differential equations such as those used to
solve real-life problems do not necessarily have to be directly solvable. On the other hand,
in the last fifty years, the application of difference equations in solving many problems in
statistics, engineering and science in general has experienced expansion. The development
of high-speed digital computer technology has motivated the application of difference equa-
tions to ordinary and partial differential equations. Apart from this, difference equations
are very useful for analyzing electrical, mechanical, thermal and other systems, the behav-
ior of electric-wave filters and other filters, insulator strings, crankshafts of multi-cylinder
engines and so on. One of the most studied second-order nonlinear differential equations is

(1.1)
(

p(t)|x′|α−1 x′
)

= q(t)|x|β−1 x, α, β > 0 ,

where p, q are continuous positive functions on [a,∞). Along with the differential equation
(1.1), discrete counterpart of this equation

(E) ∆(pn|∆xn|α−1∆xn) = qn|xn+1|β−1xn+1, n ≥ 1,

where α and β are positive constants such that α > β, p = {pn}, q = {qn} are positive real
sequences and ∆ is forward difference operator defined as ∆xn = xn+1 − xn has attracted
many researchers. Today, we will talk about the equation (E). We’ll look at how to find
necessary and sufficient conditions for the existence of regularly varying solutions. Also, our
goal is to determine the asymptotic formula for all solutions of equation that we consider. I
would like to stress that there are similarities between equations (1.1) and (E), but we will
notice some differences as well. Let us start with some basic concepts. As you can see from
(E), this equation is nonlinear (pointing to α and β) difference equation of second order
(indicating that the operator ∆ appears twice). We say that equation (E) is sub-half-linear,
or just, sub-linear when α > β while otherwise, for α = β or α < β equation (E) is called
half-linear or super-half-linear, respectively.
I said at the beginning that we will discuss about solutions of equation (E). What do we
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It is well-known that the differential equation
(

p(t)|x′|α−1 x′
)

= q(t)|x|β−1 x, α, β > 0 , (1.1)

where p, q are continuous positive functions on [a,∞), may have a nontrivial solution x, with the property
that there exists Tx < ∞, such that x(t) ≡ 0 on [Tx,∞). Such a solution is said to be extinct singular solution
or singular solution of the first kind. On the contrary, such solutions of difference equation (E) do not exists.
One more difference between differential and difference equations is that for the differential equation (1.1)
classesM+ andM− can be empty, while for the difference equation (E), this case cannot occur (see [6] and [1,
Section 5.3]). The asymptotic behaviour of nonoscillatory solutions for nonlinear second-order difference
equations has been studied in many papers, see, e.g. [2, 3], [6]-[12], [27], [38], the monograph [1] and
references therein.

For any solution x of (E) denote by x[1] =
{

x[1]
n

}

its quasi-difference x[1]
n = pn|∆xn|α−1∆xn. Thus, under our

assumptions, the classesM+ andM− can be a-priori divided into the following subclasses:

M
+
∞,∞ = {x ∈M+ : lim

n
xn = ∞, lim

n
x[1]

n = ∞, } ,

M
+
∞,l = {x ∈M+ : lim

n
xn = ∞, lim

n
x[1]

n = l, 0 < l < ∞} ,

M
+
k,∞ = {x ∈M+ : lim

n
xn = k, 0 < k < ∞, lim

n
x[1]

n = ∞} ,

M
+
k,l = {x ∈M+ : lim

n
xn = k, 0 < k < ∞, lim

n
x[1]

n = l, 0 < l < ∞} ,

M
−
k,l = {x ∈M− : lim

n
xn = k, 0 < k < ∞, lim

n
x[1]

n = −l, 0 < l < ∞} ,

M
−
0,l = {x ∈M− : lim

n
xn = 0, lim

n
x[1]

n = −l, 0 < l < ∞}

M
−
k,0 = {x ∈M− : lim

n
xn = k, 0 < k < ∞, lim

n
x[1]

n = 0} ,

M
−
0,0 = {x ∈M− : lim

n
xn = 0, lim

n
x[1]

n = 0} .

A solution x ∈M+∞,∞ is said to be strongly increasing and a solution x ∈M−0,0 is said to be strongly decreasing or
strongly decaying. For solutions which tends to some constant we useM−

B
=M−

k,0 ∪M
−
k,l
,M+

B
=M+

k,∞ ∪M
+
k,l

and for decreasing solutions which tends to zero we useM−0 =M
−
0,l ∪M

−
0,0.

Let

S =

∞
∑

n=1

1

p1/α
n

.

Depending on whether S = ∞ or S < ∞ some of the above classes may be empty.

(i) If S = ∞ then

M
+ =M+∞,∞ ∪M+∞,l and M

− =M−k,0 ∪M
−
0,0, i.e. M+B = ∅ , M−0,l ∪M

−
k,l = ∅.

(ii) If S < ∞ then
M
+ =M+∞,∞ ∪M+B and M

− =M−0 ∪M−B , i.e. M+∞,l = ∅.

In this paper, we consider only positive decreasing solutions, i.e. solutions in M−. Concerning the
existence of solutions in the classesM−

B
andM−0,l, the following holds.

Theorem 1.1. (i) Equation (E) has solutions inM−
B

if and only if

I =

∞
∑

n=1















1
pn

∞
∑

k=n

qk















1
α

< ∞.

mean when we say that x is the solution of the equation (E)? By a solution of (E) we
mean a not trivial real sequence x = {xn} satisfying (E). Which means not trivial? A
solution x of the equation (E) is called oscillatory if for every M ∈ N there exist m,n ∈ N,
M ≤ m < n such that xmxn < 0, otherwise, it is called nonoscillatory. In other words, a
solution x is called nonoscillatory if it is eventually positive or eventually negative. Every
solution of (E) is nonoscillatory. If x = {xn} is a solution of (E), then −x = {−xn} is also
a solution. Why? (Answer) Thus, there is no need to investigate both cases, and we restrict
ourselves to solutions that are eventually positive. Any such solution {xn} is eventually
strongly monotone and belongs to one of the two classes

M
+ = {x solution of (E) | ∃n0 ≥ 1 : xn > 0, ∆xn > 0, for n ≥ n0} ,

M
− = {x solution of (E) | xn > 0, ∆xn < 0, for n ≥ 1} .

The first class is a set of solutions of (E) that are eventually positive and increasing, and
the second class represents positive and decreasing solutions of equation (E). In previous
classes, we dealt with differential equation like this one (1.1) and we showed that this
equation can have an extinct singular solution, i.e. a solution that for all t > Tx, where
Tx is some real number, is equal to zero. On the contrary, such solutions of the difference
equation (E) do not exist. What’s really interesting here is one more difference between
differential and difference equations. Classes M+ and M

− can be empty for the differential
equation (1.1), but not for the difference equation (E). If you want to find out more about
it, check the reference given in the handout. Now, I’d like to introduce you the term ”quasi-
difference”. It’s expression that appears in the bracket on the left hand side of our equation,
i.e. x

[1]
n = pn|∆xn|α−1∆xn and x[1] =

{

x
[1]
n

}

. We divide the classes M
+ and M

− into the
following subclasses:

M
+
∞,∞ = {x ∈ M

+ : lim
n
xn = ∞, lim

n
x[1]n = ∞, } ,

M
+
∞,l = {x ∈ M

+ : lim
n
xn = ∞, lim

n
x[1]n = l, 0 < l <∞} ,

M
+
k,∞ = {x ∈ M

+ : lim
n
xn = k, 0 < k <∞, lim

n
x[1]n = ∞} ,

M
+
k,l = {x ∈ M

+ : lim
n
xn = k, 0 < k <∞, lim

n
x[1]n = l, 0 < l <∞} ,

M
−
k,l = {x ∈ M

− : lim
n
xn = k, 0 < k <∞, lim

n
x[1]n = −l, 0 < l <∞} ,

M
−
0,l = {x ∈ M

− : lim
n
xn = 0, lim

n
x[1]n = −l, 0 < l <∞}

M
−
k,0 = {x ∈ M

− : lim
n
xn = k, 0 < k <∞, lim

n
x[1]n = 0} ,

M
−
0,0 = {x ∈ M

− : lim
n
xn = 0, lim

n
x[1]n = 0} .

A strongly increasing solution is one from M
+
∞,∞ and strongly decreasing solutions are solu-

tions from class M−
0,0. For solutions which tends to some constant we use M−

B = M
−
k,0∪M

−
k,l,

M
+
B = M

+
k,∞∪M+

k,l and for decreasing solutions which tends to zero we useM−
0 = M

−
0,l∪M−

0,0.
The existence of the solutions of an equation (E) will depend on whether the sum

S =
∞
∑

n=1

1

p
1/α
n

2
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(ii) Equation (E) has solutions inM−0,l if and only if

J =

∞
∑

n=1

qn















∞
∑

k=n

1

p1/α
k+1















β

< ∞.

The assertion (i) follows from [6, Theorem 2 and Theorem 5-(a)], while the assertion (ii) follows from [8,
Theorem 2.2 and Theorem 3.1] and [27, Theorem 9].

As regards to the existence of strongly decreasing solutions, it is an open problem. The existence of
strongly decreasing solutions in the continuous case, that is for the differential equation (1.1), can be proved
as in [37] with the help of fixed point theory by proving that the operator

(F x) (t) =
∫ ∞

t

(

1
p(s)

∫ ∞

s

q(r)x(r)β dr

)
1
α

ds

has a nonzero fixed point. To this end the operator F acts on the set

Ω = {x ∈ C[t0,∞] : z(t) ≤ x(t) ≤ z(t0), t ≥ t0} ,

where z is a singular solution of the first kind of (1.1). The second approach, due to [34], is to construct the
sequence {xn} of asymptotically constant solutions of differential equation (1.1), having the limit function x,
and it gives rise to a positive strongly decreasing solution of (1.1). This approach, however, requires lower
bound for such a sequence of solutions, which is again given by a singular solution of the first kind of (1.1).
Clearly, due to the nonexistence of singular solutions in the discrete case, neither of these two approaches
work.

The recent development of asymptotic analysis of ordinary differential equations by means of regularly
varying functions (see [17]-[19],[23]-[26], [29], [33]-[35] and monograph [28] for results up to 2000.), suggests
to investigate the discrete problem of the existence of strongly decreasing solutions in the framework of
regularly varying sequences. The aim of this paper is twofold. We will determine conditions for the
existence of strongly decreasing solutions and give an explicit asymptotic formula for those solutions.

The theory of regularly varying sequences, sometimes called Karamata sequences, was initiated in 1930
by Karamata [22] and further developed in the seventies by Galambos, Seneta and Bojanić in [5, 16] and
recently in [14, 15]. However, until the papers of Matucci and Rehak [30, 31], the relation between regularly
varying sequences and difference equations has never been discussed. In these two papers, as well as
in succeeding papers [32, 36], the theory of regularly varying sequences has been further developed and
applied in the asymptotic analysis of second-order linear and half-linear difference equations, providing
necessary and sufficient conditions for the existence of regularly varying solutions of these equations.
Afterward, further development of discrete regularly varying theory and application to second-order
nonlinear difference equations of Emden-Fowler type was done by Agarwal and Manojlović in [3], Kapešić
and Manojlović in [21] and Kapešić in [20]. Actually, in [21], Kapešić and Manojlović gave necessary and
sufficient conditions for the existence of strongly increasing regularly varying solutions of (E) and obtained
a precise asymptotic representation of such solutions. Thus, the purpose of this paper is to proceed further
in this direction and to establish results which can be considered as a discrete analog of results in the
continuous case (see e.g.[17, 25, 29]).

Throughout this paper, symbol∼ is used to denote the asymptotic equivalence of two positive sequences,
i.e.

xn ∼ yn, n→∞ ⇔ lim
n→∞

yn

xn
= 1.

Our main tools are, besides the theory of regularly varying sequences presented in Section 2, the fixed
point technique and Stolz-Cezaro theorem. Thus, we recall two variants of Stolz-Cezaro theorem as well
as Knaster-Tarski fixed point theorem [1, Theorem 5.2.1].

is convergent or divergent. Really, if S is divergent, then our equation does not have
increasing solutions that tend to constant as well as decreasing solutions whose quasi-
difference tends to a negative constant. When S is convergent, we know that there cannot
be increasing solutions that tend to infinity and whose quasi-difference tends to a positive
constant.

(i) if S = ∞ then

M
+ = M

+
∞,∞ ∪M

+
∞,l and M

− = M
−
k,0 ∪M

−
0,0, i.e. M

+
B = ∅ , M−

0,l ∪M
−
k,l = ∅.

(ii) If S <∞ then

M
+ = M

+
∞,∞ ∪M

+
B and M

− = M
−
0 ∪M

−
B, i.e. M

+
∞,l = ∅.

Because we’re talking about decreasing solutions, we’re only interested in solutions from
the M

−.
Concerning the existence of solutions in the classes M−

B and M
−
0,l, the following holds.

Theorem 1.1 (i) Equation (E) has solutions in M
−
B if and only if

I =
∞
∑

n=1

(

1

pn

∞
∑

k=n

qk

)
1

α

<∞.

(ii) Equation (E) has solutions in M
−
0,l if and only if

J =
∞
∑

n=1

qn

(

∞
∑

k=n

1

p
1/α
k+1

)β

<∞.

Let’s go back to the differential equation. As we saw, there are two approaches how to
determine conditions for the existence of solutions. On the other hand, in the discrete case,
neither of these two approaches works. Therefore, we will use the theory of regular variation
in order to solve our problem and find asymptotic formulas for solutions of equation (E).
Is there anyone who wants to tell us the definition of regularly varying sequences? Which
is the most famous theorem? Our main tools are, besides the theory of regularly varying
sequences, the fixed point technique and Stolz-Cezaro theorem. Which fixed point theorem
we often use? What is the Stolz-Cezaro theorem about?
After this preliminary step, we can go back to the main procedure. We assume that p and q
are regularly varying sequences of indices η and σ respectively. How can we express them?
Yes, we use the following expressions:

(1.2) pn = nηξn qn = nσωn, ξ = {ξn}, ω = {ωn} ∈ SV .

Since, we are looking for strongly decreasing RV−solutions we will expressed them in the
same way

(1.3) xn = nρln, l = {ln} ∈ SV .

Because of the computational difficulty, we do not consider the case η = α. Which cases
remain to be investigated? Yes, we distinguish two cases, η < α and η > α. The first

3

jelena
Sticky Note
It is perfect way to wake up students and motivate them to  participate the lecture through the series of questions
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Lemma 1.2. If f = { fn} is a strictly increasing sequence of positive real numbers, such that limn→∞ fn = ∞, then for
any sequence 1 = {1n} of positive real numbers one has the inequalities:

lim inf
n→∞

∆ fn

∆1n
≤ lim inf

n→∞

fn

1n
≤ lim sup

n→∞

fn

1n
≤ lim sup

n→∞

∆ fn

∆1n
.

In particular, if the sequence {∆ fn/∆1n} has a limit, then

lim
n→∞

fn

1n
= lim

n→∞

∆ fn

∆1n
. (1.2)

Lemma 1.3. Let f = { fn}, 1 = {1n} be sequences of positive real numbers, such that
(i) limn→∞ fn = limn→∞ 1n = 0;
(ii) the sequence 1 is strictly monotone;
(iii) the sequence {∆ fn/∆1n} has a limit.

Then, a sequence { fn/1n} is convergent and (1.2) holds.

Lemma 1.4. (Knaster-Tarski fixed point theorem) Let X be a partially ordered Banach space with ordering ≤ .
Let M be a subset of X with the following properties: The infimum of M belongs to M and every nonempty subset of
M has a supremum which belongs to M. Let F : M → M be an increasing mapping, i.e. x ≥ y implies F x ≥ F y.
Then F has a fixed point in M.

2. Regularly Varying Sequences

We state here definitions and some basic properties of regularly varying sequences which will be essential
in establishing our main results on the asymptotic behavior of nonoscillatory solutions stated and proved
in the next section. For a comprehensive treatise on regular variation, the reader is referred to Bingham et
al. [4].

Two main approaches are known in the basic theory of regularly varying sequences: the approach due
to Karamata [22], based on a definition that can be understood as a direct discrete counterpart of elegant
and straightforward continuous definition (see Definition 2.2), and the approach due to Galambos and
Seneta, based on purely sequential definition.

Definition 2.1. (Karamata [22]) A positive sequence y = {yk}, k ∈ N is said to be regularly varying of index
ρ ∈ R if

lim
k→∞

y[λ k]

yk
= λρ for ∀λ > 0,

where [u] denotes the integer part of u.

Definition 2.2. A measurable function f : (a,∞) → (0,∞) for some a > 0 is said to be regularly varying at
infinity of index ρ ∈ R if

lim
t→∞

f (λt)
f (t)

= λρ for all λ > 0.

Definition 2.3. (Galambos and Seneta [16]) A positive sequence y = {yk}, k ∈ N is said to be regularly
varying of index ρ ∈ R if there exists a positive sequence {αk} satisfying

lim
k→∞

yk

αk
= C, 0 < C < ∞ lim

k→∞
k
∆αk−1

αk
= ρ .

If ρ = 0, then y is said to be slowly varying.

implies that S is divergent, and the second implies that S is convergent. In the first case,
any strongly decreasing solution of (E) is less than or equal to some constant. What can
we say about the regularity index? If ρ = 0 is x is a trivial or non trivial RV-solution?
If η > α, using discrete Karamata’s theorem, we have

(1.4) πn =
∞
∑

k=n

1

p
1/α
k

=
∞
∑

k=n

k−
η
α ξ

− 1

α

k ∼ α

η − α
n

α−η
α ξ

− 1

α
n =

α

η − α
· n

p
1/α
n

, n→ ∞,

so that {πn} ∈ RV
(

α−η
α

)

. Since,

lim
n→∞

xn
πn

= lim
n→∞

∆xn
− 1

pn
1
α

= lim
n→∞

(xn
[1])

1

α = 0 ,

we conclude that index of regularity strongly decreasing solutions is less then or equal to
index of regularity of πn, which is α−η

α
. What happens if ρ = α−η

α
? Whether these solutions

are trivial or non-trivial?
We already indicate that continuous and discrete case have differences, but they also have
similarities. Does anyone remember under what conditions the differential equation (1.1)
has strongly decreasing solutions? What I want to emphasize is that we will obtain the
similar result here. Actually, we have

Theorem 1.2 Suppose that p ∈ RV(η) and q ∈ RV(σ). (i) Let η < α. If I < ∞, then
M

−
0,0 6= ∅. (ii) Let η > α. If J <∞, then M

−
0,0 6= ∅.

Series I and J are given in the first part of the lecture. So, to clarify, our equation has a
strongly decreasing solution if I in the first case and J in the second are convergent. In
order to prove the previous theorem, we can see that (i) for η < α, I <∞ if and only if

(1.5) σ < η − α− 1

or

(1.6) σ = η − α− 1 and
∞
∑

k=1

k−1

(

ωk

ξk

)
1

α

<∞ ;

(ii) for η > α, J <∞ if and only if

(1.7) σ <
βη

α
− β − 1

or

(1.8) σ =
βη

α
− β − 1 and

∞
∑

k=1

k−1 ωk

ξ
β/α
k

<∞ .

Taking the preceding considerations into account, the Theorem 1.2 will be proven by con-
sidering these four cases.
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The totality of regularly varying sequences of index ρ and slowly varying sequences will be denoted,
respectively, by RV(ρ) and SV.

Bojanić and Seneta have shown in [5] that Definition 2.1 and Definition 2.3 are equivalent.
The concept of normalized regularly varying sequences was introduced by Matucci and Rehak in [30]:

Definition 2.4. A positive sequence y = {yk}, k ∈N is said to be normalized regularly varying of index ρ ∈ R if
it satisfies

lim
k→∞

k∆yk

yk
= ρ.

If ρ = 0, then y is called a normalized slowly varying sequence.

In what follows, NRV(ρ) and NSV will be used to denote the set of all normalized regularly varying
sequences of index ρ and the set of all normalized slowly varying sequences. Typical examples are:

{log k} ∈ NSV, {kρ log k} ∈ NRV(ρ), {1 + (−1)k/k} ∈ SV \ NSV .

There exist various necessary and sufficient conditions for a sequence of positive numbers to be regularly
varying (see [5, 16, 30, 31]), and consequently, each one of them could be used to define a regularly varying
sequence. The one that is the most important is the following Representation theorem (see [5, Theorem 3]),
while some other representation formula for regularly varying sequences were established in [31, Lemma
1].

Theorem 2.5. (Representation theorem) A positive sequence {yk}, k ∈N is said to be regularly varying of index
ρ ∈ R if and only if there exist sequences {ck} and {δk} such that

lim
k→∞

ck = c0 ∈ (0,∞) and lim
k→∞

δk = 0,

and

yk = ck kρ exp















k
∑

i=1

δi

i















.

In [5] very useful embedding theorem was proved, which gives the possibility of using the continuous
theory in developing a theory of regularly varying sequences. However, as noticed in [5], such development
is not generally close and sometimes far from a simple imitation of arguments for regularly varying
functions.

Theorem 2.6. (Embedding Theorem) If y = {yn} is a regularly varying sequence of index ρ ∈ R, then function
Y(t) defined on [0,∞) by Y(t) = y[t] is a regularly varying function of index ρ. Conversely, if Y(t) is a regularly
varying function on [0,∞) of index ρ, then a sequence {yk}, yk = Y(k), k ∈N is regularly varying of index ρ.

Next, we state some important properties of RV sequences, useful for the development of asymptotic
behavior of solutions of (E) in the subsequent section (for more properties and proofs see [5, 30]).

Theorem 2.7. (i) y ∈ RV(ρ) if and only if yk = kρ lk, where l = {lk} ∈ SV.

(ii) Let x ∈ RV(ρ1) and y ∈ RV(ρ2). Then, xy ∈ RV(ρ1 + ρ2), x + y ∈ RV(ρ), ρ = max{ρ1, ρ2} and
1/x ∈ RV(−ρ1).

(iii) If y ∈ RV(ρ), then limk→∞
yk+1

yk
= 1.

(iv) If l ∈ SV and lk ∼ Lk, k→∞, then L ∈ SV.

(v) If y ∈ RV(ρ), then {n−σyn} is eventually increasing for each σ < ρ and {n−µyn} is eventually decreasing for
each µ > ρ.

Theorem 1.3 Suppose that p ∈ RV(η) and q ∈ RV(σ). (i) Let η < α. If (1.5) holds, then
equation (E) possesses a solution x ∈ M

−
0,0. (ii) Let η > α. If (1.7) holds, then equation

(E) possesses a solution x ∈ M
−
0,0.

In both cases, we can easily prove that the sequence X = {Xn},

(1.9) Xn =

[

nα+1p−1
n qn

(−ρ)α (α− η − ρα)

]
1

α−β

, n ≥ 1,

where ρ is given by

(1.10) ρ =
σ + α + 1− η

α− β

satisfy asymptotic relation

(1.11)
∞
∑

k=n

(

1

pk

∞
∑

j=k

qjX
β
j+1

)
1

α

∼ Xn, n→ ∞.

Also, if we look at how we defined Xn, we can conclude that its index of regularity is ρ and
that Xn → ∞. Thus, there exists n0 > 1 such that

(1.12) Xn+1 ≤ Xn and
1

2
Xn ≤

∞
∑

k=n

(

1

pk

∞
∑

j=k

qjX
β
j+1

)
1

α

≤ 2Xn, for n ≥ n0 .

Let such n0 be fixed. We choose constants κ ∈ (0, 1) and K > 1 such that

(1.13) κ1−
β
α ≤ 1

2
and K1− β

α ≥ 2 .

Consider the space Υn0
of all real sequences x = {xn}∞n=n0

such that xn/Xn is bounded for
n ≥ n0. Then, Υn0

is a Banach space, endowed with the norm

||x|| = sup
n≥n0

xn
Xn

.

Further, Υn0
is partially ordered, with the usual pointwise ordering ≤: for x, y ∈ Υn0

, x ≤ y
means xn ≤ yn for all n ≥ n0. Define the subset X ⊂ Υn0

by

(1.14) X = {x ∈ Υn0
: κXn ≤ xn ≤ KXn, n ≥ n0 }.

For any subset B ⊂ X , it is obvious that inf B ∈ X and supB ∈ X . Next, define the
operator F : X → Υn0

by

(1.15)
(

Fx
)

n
=

∞
∑

k=n

(

1

pk

∞
∑

j=k

qjx
β
j+1

)
1

α

, n ≥ n0,

and show that F has a fixed point. Which theorem will we use? What are the properties of
the Knaster-Tarski fixed point theorem? Are all of them fulfilled? OK, F has fixed point
x. That fixed point is a solution that we are looking for. Why? What do we need to check?
Similarly, if η < α and (1.6) hold or η > α and (1.8) hold, then equation (E) has a strongly
decreasing solution.
In the next part of the lecture, we discuss the asymptotic representation of strongly de-
creasing solutions.

5
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(vi) Let l ∈ SV. Then, limn→∞ nρ ln = 0 if ρ < 0 and limn→∞ nρ ln = ∞ if ρ > 0.

In view of the statement (i) of the previous theorem, if for y ∈ RV(ρ)

lim
k→∞

yk

kρ
= lim

k→∞
lk = const > 0,

then y = {yn} is said to be a trivial regularly varying sequence of index ρ and is denoted by y ∈ tr − RV(ρ).
Otherwise y is said to be a nontrivial regularly varying sequence of index ρ, denoted by y ∈ ntr − RV(ρ).

Next theorem can be found in [3] for normalized regularly varying sequences, but it apparently holds
for all regularly varying sequences.

Theorem 2.8. If f = { fn} ∈ RV is a strictly decreasing sequence, such that limn→∞ fn = 0, then for each γ ∈ R

lim
n→∞

f
−γ
n

∞
∑

k=n

f
γ−1
k

(

−∆ fk
)

=
1
γ
.

If 1 = {1n} ∈ RV is a strictly increasing sequence such that limn→∞ 1n = ∞, then

lim
n→∞
1
−γ
n

n−1
∑

k=1

1
γ−1
k
∆1k =

1
γ
.

The following theorem can be seen as the discrete analog of the Karamata’s integration theorem and plays a
central role in the proof of our main results in Section 3. The proof of this theorem can be found in [5], [21]
and [36].

Theorem 2.9. Let l = {ln} ∈ SV.

(i) If α > −1, then lim
n→∞

1
nα+1ln

n
∑

k=1

kαlk =
1

1 + α
;

(ii) If α < −1, then lim
n→∞

1
nα+1ln

∞
∑

k=n

kαlk = −
1

1 + α
;

(iii) If

∞
∑

k=1

lk
k
< ∞, then

∞
∑

k=n

lk
k
∈ SV and lim

n→∞
1
ln

∞
∑

k=n

lk
k
= ∞;

(iv) If

∞
∑

k=1

lk
k
= ∞, then

n
∑

k=1

lk
k
∈ SV and lim

n→∞
1
ln

n
∑

k=1

lk
k
= ∞ .

Remark 2.10. In view of Theorem 2.7-(iii) and Theorem 2.9-(i), it is easy to see, that for l ∈ SV, if α > −1,
then we have

n−1
∑

k=1

kαlk ∼
(n − 1)α+1ln−1

α + 1
∼ nα+1ln
α + 1

∼
n

∑

k=1

kαlk, n→∞.

3. Main results

In this section we assume that p ∈ RV(η), q ∈ RV(σ) and use expressions

pn = nηξn qn = nσωn, ξ = {ξn}, ω = {ωn} ∈ SV , (3.1)

considering strongly decreasing RV−solutions expressed as

xn = nρln, l = {ln} ∈ SV . (3.2)

Theorem 1.4 Suppose that p ∈ RV(η) and q ∈ RV(σ). (i) Let η < α. Equation (E)
possesses regularly varying solutions x of index ρ < 0 if and only if (1.5) holds. (ii) Let
η > α. Equation (E) possesses regularly varying solutions x of index ρ < α−η

α
if and only if

(1.7). In both cases ρ is given by (1.10) and the asymptotic behavior of any such solution
x is governed by the unique formula (1.16).

Proof. The “only if” part: If η < α and x ∈ RV(ρ) with ρ < 0 then x is strongly
decreasing. Why? Summing (E) twice from n to∞ and using discrete Karamata’s theorem,
we obtain that x has asymptotic behavior

(1.16) xn ∼
[

nα+1p−1
n qn

(−ρ)α(α− η − ρα)

]
1

α−β

, n→ ∞.

Also, the index of regularity is given by (1.10) and σ satisfies (1.5). In the opposite case,
for η > α and x ∈ RV(ρ) with ρ < α−η

α
, we see that (1.7) holds and that ρ is given by

(1.10). The “if” part: According to the previous theorem, equation (E) has a solution

x ∈ M
−
0,0. It remains to prove that x is a regularly varying sequence of index ρ. Do you

remember how we showed this in a continuous case? Here we use the Stolz-Cezaro theorem.
The procedure is the same as in continuous case. We have

0 < lim inf
n→∞

xn
Xn

≤ lim sup
n→∞

xn
Xn

<∞,

where Xn is given by (1.9). Then,

L = lim sup
n→∞

xn
Xn

≤ lim sup
n→∞

∆xn
∆Xn

= lim sup
n→∞

−
(

1
pk

∑∞

k=n qkx
β
k+1

)1/α

−
(

1
pk

∑∞

k=n qkX
β
k+1

)1/α

≤
(

lim sup
n→∞

∑∞

k=n qkx
β
k+1

∑∞

k=n qkX
β
k+1

)1/α

≤
(

lim sup
n→∞

−qnxβn+1

−qnXβ
n+1

)1/α

≤
(

lim sup
n→∞

xn+1

Xn+1

)β/α

= L
β
α .

Since β < α, we conclude that

(1.17) 0 < L ≤ 1 .

Similarly, we can see that l = lim infn→∞ xn/Xn satisfies

(1.18) 1 ≤ l <∞ .

From (1.17) and (1.18) we obtain that l = L = 1, which means that xn ∼ Xn, n→ ∞ and
ensures that x is a regularly varying solution of (E) with requested regularity index and
the asymptotic representation given by (1.16). �We consider border cases separately.

Theorem 1.5 Suppose that p ∈ RV(η), η < α and q ∈ RV(σ). There exists x ∈ M
−
0,0 ∩

ntr − SV if and only if (1.6) holds. All such solutions of (E) enjoy the precise asymptotic
formula

(1.19) xn ∼





α− β

α

∞
∑

k=n

(

1

pk

∞
∑

j=k

qj

)
1

α





α
α−β

, n→ ∞.
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Moreover, we assume that η , α and distinguish two mutually exclusive cases:

(i) η < α implying that S = ∞; and (ii) η > α implying that S < ∞.

Case (i): It is clear that for any strongly decreasing solution of (E) it holds that xn ≤ c, for large n. Thus, we
have that the index of regularity ρ of strongly decreasing RV−solution x must satisfy ρ ≤ 0. If ρ = 0 then
ln = xn → 0, so x is a member of ntr − SV.

Case (ii): Using (3.1) and Theorem 2.9 we have

πn =

∞
∑

k=n

1

p1/α
k

=

∞
∑

k=n

k−
η

α ξ
− 1
α

k
∼ α

η − αn
α−η
α ξ
− 1
α

n =
α

η − α ·
n

p1/α
n

, n→∞, (3.3)

so that {πn} ∈ RV
(

α−η
α

)

. For any strongly decreasing solution x of (E), by application of Lemma 1.3, we have
that

lim
n→∞

xn

πn
= lim

n→∞
∆xn

− 1
pn

1
α

= lim
n→∞

(xn
[1])

1
α = 0 ,

implying that the index of regularity ρ of strongly decreasing solutions must satisfy ρ ≤ α−η
α .

If η < α, the totality of strongly decreasing RV−solutions will be divided into the following two classes

ntr − SV or RV(ρ) with ρ < 0,

while, if η > α, the totality of strongly decreasing RV−solutions of (E) will be divided into the following
two subclasses:

RV
(α − η
α

)

or RV(ρ) with ρ <
α − η
α

.

Our purpose is to show that all solutions in each of this four subclasses of strongly decreasingRV−solutions
of (E) enjoy one and the same asymptotic behavior as n→∞,whereby the regularity index of such a solution
is uniquely determined by α, β and the regularity indices η, σ of coefficients p, q. Moreover, necessary and
sufficient conditions for the existence of solutions belonging to these four subclasses of strongly decreasing
RV−solutions will be established.

3.1. Existence of strongly decreasing solutions

Conditions for the existence of a strongly decreasing solution of differential equation (1.1) is given by
the following theorem:

Theorem 3.1. (i) Let
∫ ∞

a
p(t)−

1
α dt = ∞, a ≥ 0. If

∫ ∞

a

(

1
p(t)

∫ ∞

t

q(s)ds

)
1
α

dt < ∞,

then equation (1.1) has a strongly decreasing solution.

(ii) Let
∫ ∞

a
p(t)−

1
α dt < ∞, a ≥ 0. If

∫ ∞

a

q(t)













∫ ∞

t

ds

p(s)
1
α













β

dt < ∞,

then equation (1.1) has a strongly decreasing solution.

Proof. The “only if” part: We can calculate the index of regularity of solution x.
Could anyone tell me what ρ is? Similarly, as in the previous theorem, we obtain that x i
given with

(1.20) xn ∼ 1

(α− η)
1

α

∞
∑

k=n

k−1ξ
− 1

α

k ω
1

α

k l
β
α

k , n→ ∞ .

By properties of RVsequences and discrete Karamata’s theorem, we prove that x has the
asymptotic formula (1.19) and that (1.6) holds. The “if” part: In the same way as
in the previous theorem, we get that equation (E) has a strongly decreasing RVsolution.
�Another border case is given by the next theorem.

Theorem 1.6 Suppose that p ∈ RV(η), η > α and q ∈ RV(σ). There exists x ∈ M
−
0,0 ∩

RV
(

α−η
α

)

if and only if (1.8) holds. All such solutions of (E) enjoy the precise asymptotic
behaviour

(1.21) xn ∼
(

αα−1 α− β

(η − α)α

)
1

α−β

n p
− 1

α
n

[

∞
∑

k=n

kβqkp
−

β
α

k

]
1

α−β

, n→ ∞.

I do not want to prove this theorem now since its proof is quite similar to the proof of the
previous theorem. For more information, you can read the literature given in the hangout.
Now, when we have proved all the results, what can we conclude? I’d like to emphasize that
the existence of strongly decreasingRV−solutions for the equation (E) withRV coefficients
is fully characterized by the assumption I <∞ if S = ∞ and by the assumption J <∞ if
S <∞. In fact, this conclusion can be formulated in the following way.

Corollary 1.1 Suppose that p ∈ RV(η), η 6= α and q ∈ RV(σ).

(i) Let S = ∞. Equation (E) has strongly decreasing RV-solutions if and only if I <∞.

(ii) Let S <∞. Equation (E) has strongly decreasing RV-solutions if and only if J <∞.

Moreover, if S = ∞, then J = ∞ so by Theorem 1.1 M
−
0,l = ∅. Otherwise, if S < ∞,

denoting the series Q =
∑∞

k=1 qk, we have two cases:

(a) If Q = ∞, then I = ∞, so by Theorem 1.1 we have M
− = M

−
0 i.e. M−

B = ∅.
(b) If Q <∞, then I <∞, so by Theorem 1.1 we have M

− = M
−
0 ∪M

−
B.

Using conclusions from the previous corollary and Theorem 1.1, we get the next two corol-
laries where we will use the following symbols: ∗ R denote the set of all regularly varying

solutions, ∗ R− denote the set of all decreasing regularly varying solutions, ∗ R−
0 = R∩M−

0 .

∗ R−
0,0 = R∩M

−
0,0.

Corollary 1.2 Suppose that p ∈ RV(η), q ∈ RV(σ) and S = ∞. Then,

R− = ntr − SV ∪RV
(

σ + α + 1− η

α− β

)

∪M
−
B

if and only if I <∞.

7
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The proof of the previous theorem can be found in [13, 34] for (i) and in [37] for (ii). It is expected that for
the discrete version of Theorem 3.1, the existence of strongly decreasing solution is characterized by the
assumption I < ∞ if S = ∞ and by the assumption J < ∞ if S < ∞. In fact, we prove

Theorem 3.2. Suppose that p ∈ RV(η) and q ∈ RV(σ).
(i) Let η < α. If I < ∞, thenM−0,0 , ∅.
(ii) Let η > α. If J < ∞, thenM−0,0 , ∅.
First of all, let’s notice that if η < α, then σ < −1 is a necessary condition for I < ∞. Then, using discrete

Karamata theorem, (3.1) and (3.3), we have

















1
pk

∞
∑

j=k

q j

















1
α

∼ 1

(−(σ + 1))
1
α

(

kσ+1−ηωk

ξk

)
1
α

, k→∞ .

On the other hand, if η > α application of discrete Karamata theorem gives

qk

















∞
∑

j=k

1

p1/α
j

















β

∼
(

α

η − α

)β

kσ+β−
β

α η
ωk

ξ
β/α

k

, k→∞.

Consequently,

(i) for η < α, I < ∞ if and only if

σ < η − α − 1 (3.4)

or

σ = η − α − 1 and
∞
∑

k=1

k−1
(

ωk

ξk

)
1
α

< ∞ ; (3.5)

(ii) for η > α, J < ∞ if and only if

σ <
βη

α
− β − 1 (3.6)

or

σ =
βη

α
− β − 1 and

∞
∑

k=1

k−1 ωk

ξ
β/α

k

< ∞ . (3.7)

Taking into account the previous consideration, Theorem 3.2 will be proved by considering the above four
cases.

Theorem 3.3. Suppose that p ∈ RV(η) and q ∈ RV(σ).
(i) Let η < α. If (3.4) holds, then equation (E) possesses a solution x ∈M−0,0.
(ii) Let η > α. If (3.6) holds, then equation (E) possesses a solution x ∈M−0,0.

Proof. Suppose either η < α and (3.4) holds or η > α and (3.6) holds. Denote

Xn =

[ nα+1p−1
n qn

(−ρ)α (α − η − ρα)

]

1
α−β
, n ≥ 1, (3.8)

and λ =
(−ρ)α (α − η − ρα), where ρ is given by

ρ =
σ + α + 1 − η

α − β . (3.9)

Corollary 1.3 Suppose that p ∈ RV(η), q ∈ RV(σ) and S <∞. Then,

(i) If σ < −1 or σ = −1 and Q <∞, then

R− = RV
(

σ + α + 1− η

α− β

)

∪M
−
0,l ∪M

−
B.

(ii) If σ = −1 and Q = ∞ or −1 < σ < βη
α
− β − 1, then

R− = R−
0 = RV

(

σ + α + 1− η

α− β

)

∪M
−
0,l.

(iii) If σ = βη
α
− β − 1 and J <∞, then

R− = R−
0 = RV

(

α− η

α

)

∪M
−
0,l.

(iv) If σ = βη
α
− β − 1 and J = ∞ or σ > βη

α
− β − 1, then

R− = ∅.

I want to emphasize one thing that is very interesting. At the beginning of today’s lecture,
I said that class M− is not empty. But, if you look at the previous corollary, you can see
that class R− = ∅. Can anyone explain this?
I’d like to illustrate with examples what we learned today.

Example 1.1 Consider the difference equation

(1.22) ∆

(

nη

log n
(∆xn)

3

)

=
nη−7ϕn

log5 n

√

xn+1
3, n ≥ 1,

where ϕn is a positive real-value sequence such that limn→∞ ϕn = δ and η 6= 3. In this

equation, α = 3, β =
3

2
, {pn} ∈ RV(η) and {qn} ∈ RV(σ), where σ = η − 7. (i) Suppose

that η < 3. In this case
σ = η − 7 < η − 4 = η − α− 1,

so in view of Theorem 1.4-(i) and Theorem 1.1 this equation has a strongly decreasing RV-
solution of index ρ < 0 as well as a solution in M

−
B = tr−SV . More precisely, by Theorem

1.4-(i) equation (1.22) has a strongly decreasing solution which belongs to RV(−2). That
solution has asymptotic behavior

(1.23) xn ∼
(

δ

8(9− η)

)
2

3

n−2 (log n)−
8

3 , n→ ∞.

If

(1.24) ϕn =
n7(n+ 1)3

(log n)4 (log(n+ 1))5

(

(log n)9ψn − (log(n+ 1))9
(

n+ 1

n

)η

ψn+1

)

,

8
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Clearly, X = {Xn} ∈ RV(ρ) and it may be expressed in the form

Xn = λ
− 1
α−β nρ

(

ωn

ξn

)
1
α−β

. (3.10)

Notice that (3.4) and (3.9) imply that ρ < 0, while (3.6) and (3.9) imply that ρ < α−η
α , so that by Theorem

2.7-(v),(vi), Xn → 0 as n→∞ and {Xn} is eventually decreasing, in both cases (i) and (ii).
Let us first prove that the sequence X satisfies the asymptotic relation

∞
∑

k=n

















1
pk

∞
∑

j=k

q jX
β

j+1

















1
α

∼ Xn, n→∞. (3.11)

Using (3.1), by application of Theorem 2.9-(ii) and Theorem 2.7-(iii), we get
∞
∑

k=n

qkX
β

k+1 ∼ λ−
β

α−β

∞
∑

k=n

kσ+ρβξ
− β

α−β
k

ω
α
α−β
k
= λ−

β

α−β

∞
∑

k=n

kα(ρ−1)+η−1ξ
− β

α−β
k

ω
α
α−β
k

∼ λ−
β

α−β
nα(ρ−1)+ηξ

− β

α−β
n ω

α
α−β
n

−(α(ρ − 1) + η)
, n→∞. (3.12)

Notice that α(ρ − 1) + η < 0 in both cases (i) and (ii). From (3.12), applying Theorem 2.9-(ii), we obtain the
desired asymptotic relation for X:

∞
∑

k=n

















1
pk

∞
∑

j=k

q jX
β

j+1

















1
α

∼ λ−
β

α(α−β) (α(1 − ρ) − η)−
1
α

∞
∑

k=n

kρ−1ξ
− 1
α−β

k
ω

1
α−β
k

∼ λ−
β

α(α−β) (α(1 − ρ) − η)−
1
α

nρξ
− 1
α−β

n ω
1
α−β
n

−ρ

= λ−
β

α(α−β) · λ− 1
α nρξ

− 1
α−β

n ω
1
α−β
n = Xn, n→∞ .

Thus, there exists n0 > 1 such that

Xn+1 ≤ Xn and
1
2

Xn ≤
∞
∑

k=n

















1
pk

∞
∑

j=k

q jX
β

j+1

















1
α

≤ 2Xn, for n ≥ n0 . (3.13)

Let such n0 be fixed. We choose constants κ ∈ (0, 1) and K > 1 such that

κ1− βα ≤ 1
2

and K1− βα ≥ 2 . (3.14)

Consider the space Υn0 of all real sequences x = {xn}∞n=n0
such that xn/Xn is bounded for n ≥ n0. Then, Υn0 is

a Banach space, endowed with the norm

||x|| = sup
n≥n0

xn

Xn
.

Further, Υn0 is partially ordered, with the usual pointwise ordering ≤: for x, y ∈ Υn0 , x ≤ y means xn ≤ yn

for all n ≥ n0. Define the subset X ⊂ Υn0 by

X = {x ∈ Υn0 : κXn ≤ xn ≤ KXn, n ≥ n0 }. (3.15)

For any subset B ⊂ X, it is obvious that inf B ∈ X and sup B ∈ X. Next, define the operator F : X → Υn0 by

(

F x
)

n
=

∞
∑

k=n

















1
pk

∞
∑

j=k

q jx
β

j+1

















1
α

, n ≥ n0, (3.16)

where

ψn =

(

1

n2
− 1

(n+ 1)2

(

log n

log(n+ 1)

)
8

3

)3

,

then δ = 8(9− η) and the considered equation has an exact solution n−2 (log n)−
8

3 . (ii) For
η ∈ (3, 9) we have that η > α and σ = η − 7 < η−5

2
= βη

α
− β − 1, so in view of Theorem

1.4-(ii) the equation (1.22) has a strongly decreasing solution which belongs to RV(−2)
and satisfies (1.23). This equation also possess a solution which belongs to a class M

−
0,l.

(iii) Let η = 9. Then, σ = 2 =
βη

α
− β − 1 and J < ∞. By Theorem 1.6 the equation

(1.22) has a solution x ∈ RV(1− η
α
) = RV(−2) and any such solution x has the asymptotic

representation

xn ∼
(

δ

16

)
2

3

n−2(log n)
1

3

(

∞
∑

k=n

k−1(log k)−
9

2

)
2

3

∼
(

δ

16

)
2

3

n−2(log n)
1

3

(

2

7

)
2

3

(log n)−
7

3 =

(

δ

56

)
2

3

(n log n)−2, n→ ∞,

where we used that

∞
∑

k=n

k−1(log k)−
9

2 ∼
∫ ∞

n

x−1(log x)−
9

2dx, n→ ∞ .

If

ϕn =
(n+ 1)3(log(n+ 1))3(log n)5

n2
(χn − χn+1),

where

χn =
n3

(log n)7

(

1−
(

n log n

(n+ 1) log(n+ 1)

)2
)3

,

then limn→∞ ϕn = 56 and xn = (n log n)−2 is an exact solution of the equation (1.22). (iv)
If η > 9, then σ = η − 7 > η−5

2
= βη

α
− β − 1 so J = ∞. Therefore, by Corollary 1.1 the

equation (1.22) does not have decreasing regularly varying solutions.

Example 1.2 Consider the difference equation

(1.25) ∆
(

−nη
√

log n (∆xn)
2
)

=
nη−3 ϕn

(log n)19/6
3
√
xn+1, n ≥ 1,

where ϕn is a positive real-value sequence such that limn→∞ ϕn = δ and η 6= 2. Here,
pn = nη

√
log n, and qn = nη−3 ϕn (log n)

−19/6, so p ∈ RV(η) and q ∈ RV(σ), where σ =
η − 3 = η − α− 1. Let η < 2 = α. Using that

∞
∑

k=n

(

1

pk

∞
∑

j=k

qj

)
1

α

∼
∞
∑

k=n

√

ϕn

2− η

1

k (log k)11/6
<∞, n→ ∞,
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and show thatF has a fixed point by using Lemma 1.4. Namely, the operatorF has the following properties:

(i) Operator F maps X into itself: Let x ∈ X. Using (3.13), (3.14), (3.15) and (3.16), we get

(F x)n ≤ K
β

α

∞
∑

k=n

















1
pk

∞
∑

j=k

q jX
β

j+1

















1
α

≤ 2K
β

α Xn ≤ K Xn, n ≥ n0 .

and

(F x)n ≥ κ
β

α

∞
∑

k=n

















1
pk

∞
∑

j=k

q jX
β

j+1

















1
α

≥ κ
β

α
Xn

2
≥ κXn, n ≥ n0 .

This shows that (F x)n ∈ X, for all n ≥ n0, that is, F (X) ⊂ X.

(ii) Operator F is increasing, i.e. for any x, y ∈ X, x ≤ y implies F x ≤ F y.

Thus all the hypotheses of Lemma 1.4 are fulfilled implying the existence of a fixed point x ∈ X of F ,
satisfying

xn =

∞
∑

k=n

















1
pk

∞
∑

j=k

q jx
β

j+1

















1
α

, n ≥ n0 . (3.17)

It is clear in view of (3.15) and the fact that Xn → 0, n→∞, that x is a positive solution of (E) which satisfies
xn → 0, n→∞. Moreover, due to (3.10), (3.13) and (3.15), we have

pn(−∆xn)α ≤ Kβ
∞
∑

k=n

qkX
β

k+1 ≤ m

∞
∑

k=n

kσ+ρβ fk, (3.18)

where

fk =

(

ωk
α

ξk
β

)
1
α−β

, f = { fk} ∈ SV and m = Kβλ−
β

α−β .

Since, η < α and (3.4) as well as η > α and (3.6) imply that σ+ρβ < −1, from (3.18) we conclude that x[1]
n → 0,

n→∞, that is x ∈M−0,0. �

Theorem 3.4. Suppose that p ∈ RV(η), η < α and q ∈ RV(σ). If (3.5) holds, then there exists x ∈M−0,0.

Proof. Suppose (3.5) holds. Define sequences T = {Tn} and G = {Gn} by

Gn =

∞
∑

k=n

k−1ξ
− 1
α

k
ω

1
α

k
, Tn =





















α − β
α

∞
∑

k=n

















1
pk

∞
∑

j=k

q j

















1
α





















α
α−β

, n ≥ 1 . (3.19)

Since the first condition from (3.5) implies σ < −1, application of Theorem 2.9 gives

∞
∑

k=n

















1
pk

∞
∑

j=k

q j

















1
α

∼ 1

(α − η)
1
α

∞
∑

k=n

k−1ξ
− 1
α

k
ω

1
α

k
, n→∞,

so that

Tn ∼
1

(α − η)
1
α−β

(

α − β
α

)
α
α−β

G
α
α−β
n , n→∞

by Theorem 1.6 the equation (1.25) has a nontrivial slowly varying solution and any such
solution x has the asymptotic representation

xn ∼
(

δ

2− η

)
3

5

· (log n)−1, n→ ∞.

If

ϕn = n3

(

log n

log(n+ 1)

)
19

6





(log n+1
n
)2

(log n)
3

2 (log(n+ 1))
1

2

−
(

n+ 1

n

)η
(

log n+2
n+1

log(n+ 2)

)2


 ,

then δ = 2−η and considered equation has an exact solution xn = (log n)−1, x ∈ ntr−SV .
Notice that in the case η > 2 = α, since σ > βη

α
− β − 1, using Corollary 1.3, we conclude

that R− = ∅.

OK, that would be all for today. Please feel free to ask questions and make comments.
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[5] R. Bojanić, E. Seneta, A unified theory of regularly varying sequences,Mathematische
Zeitschript, 134 (1973), 91–106.
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Clearly, G ∈ SV and T ∈ SV. Applying Theorem 2.9-(ii) and using the first condition from (3.5) we get

∞
∑

k=n

qkT
β

k+1 ∼
1

(α − η)
α
α−β

(

α − β
α

)

αβ

α−β

nη−αωnG
αβ

α−β
n , n→∞.

Thus, by Theorem 2.8, the previous relation gives
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
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pk
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q jT
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


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)
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α−β ∞
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β
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α − β
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)

β

α−β ∞
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β

α−β
k

∼ 1

(α − η)
1
α−β

(

α − β
α

)
α
α−β

G
α
α−β
n ∼ Tn, n→∞.

Consequently, we conclude that T satisfies the asymptotic relation (3.11).
The rest of the proof is the same as the proof of Theorem 3.3 where Xn is replaced with Tn. Then, a

solution x of the equation (E) satisfying κTn ≤ xn ≤ K Tn, for large n, is obtained by the application of
Knaster-Tarski fixed point theorem and belongs to the classM−0,0. �

Theorem 3.5. Suppose that p ∈ RV(η), η > α and q ∈ RV(σ). If (3.7) holds, then there exists x ∈M−0,0.

Proof. Suppose (3.7) holds. Using (3.1) and the assumption (3.7), we have that

∞
∑
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qk


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











∞
∑
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k
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













β

∼
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α

η − α

)β ∞
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− βα
k
=

(

α

η − α

)β ∞
∑

k=1

k−1ωkξ
− βα
k
, n→∞ .

Define sequences Y = {Yn} and W = {Wn} by

Wn =

∞
∑

k=n

k−1ωkξ
− βα
k
, Yn =

(

α

η − α

)
α
α−β

(

α − β
α

)
1
α−β

n p
− 1
α

n W
1
α−β
n , n ≥ 1 . (3.20)

Note that W ∈ SV and since n p
− 1
α

n = n
α−η
α ξ
− 1
α

n , we see that Y ∈ RV
(

α−η
α

)

. Thus, application of Theorem 2.8
gives

∞
∑

k=n

qkY
β

k+1 ∼
(

α

η − α

)

αβ

α−β
(

α − β
α

)

β
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k

W
β
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k
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α
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α

)

β

α−β ∞
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β
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k

∼
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α

η − α

)

αβ

α−β
(

α − β
α

)
α
α−β

W
α
α−β
n , n→∞,

which yields with the help of Theorem 2.9-(ii)
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







1
pk

∞
∑

j=k

q jY
β

j+1

















1
α

∼
(

α

η − α

)

β

α−β
(

α − β
α

)
1
α−β ∞

∑

k=n

k−
η

α ξ
− 1
α

k
W

1
α−β
k

∼
(

α

η − α

)
α
α−β

(

α − β
α

)
1
α−β

n
α−η
α ξ
− 1
α

n W
1
α−β
n = Yn, n→∞.
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Sūrikaisekikenkyūsho Kōkyūroku, Qualitative theory of ordinary differential equations
in real domains and its applications, No. 1959, 2015.7, pp 14–34.

11
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Therefore, Y = {Yn} satisfies the asymptotic relation (3.11). Then, proceeding exactly as in the proof of
Theorem 3.3, replacing Xn with Yn, a solution x satisfying κYn ≤ xn ≤ K Yn, for large n, is obtained by the
application of Knaster-Tarski fixed point theorem, and belongs to a classM−0,0. �

Proof of Theorem 3.2:
(i) Follows from Theorem 3.3-(i) and Theorem 3.4.
(ii) Follows from Theorem 3.3-(ii) and Theorem 3.5. �

3.2. Asymptotic representation of strongly decreasing
RV-solutions

To simplify the “only if” part of the proof of main results we prove the next two lemmas.

Lemma 3.6. Let p ∈ RV(η), η < α and q ∈ RV(σ). For any x ∈M−0,0∩RV(ρ) with ρ ≤ 0 only one of the following
two statements holds:
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Then, it is σ = η − α − 1 < −1.
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n qn

(−ρ)α(α − η − ρα)

]
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, n→∞. (3.22)

Then, it is σ < η − α − 1.

Proof. Suppose that (E) has a solution x ∈ M−0,0 ∩ RV(ρ) with ρ ≤ 0, satisfying xn > 0, ∆xn < 0 for
n ≥ n0 + 1 ≥ 2 and expressed with (3.2). Summing (E) for k ≥ n ≥ n0, we get
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[28] V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics
1726, Springer-Verlar, Berlin-Heidelberg, 2000.
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[32] S. Matucci, P. Řehák, Regularly varying solutions of second-order difference equations
with arbitrary sign coefficients, Adv. Difference Equ., Article ID-673761, 2010.
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Since limn→∞ xn = 0, summing previous relation from n to∞, we get

xn ∼
∞
∑

k=n

k−
η

α

(

Ωk

ξk

)

1
α

, n→∞ , (3.25)

implying that 1 − η

α ≤ 0 i.e. η ≥ α which is contradiction, so this case is impossible.
Therefore, σ + ρβ < −1. An application of Theorem 2.9-(ii) in (3.23) gives

−∆xn =

(

1
pn

∞
∑

k=n

qkx
β

k+1

)

1
α

∼ n
σ+ρβ+1−η

α ω
1
α
n ξ
− 1
α

n l
β

α
n

(−(σ + ρβ + 1))
1
α

, n→∞. (3.26)

Because xn → 0, n→∞, summing (3.26) from n to∞we get

xn ∼
∞
∑

k=n

k
σ+ρβ+1−η

α ω
1
α

k
ξ
− 1
α

k
l
β

α

k

(−(σ + ρβ + 1))
1
α

, n→∞. (3.27)

From the last relation we conclude that it must be (σ+ρβ+1−η)/α ≤ −1, so we distinguish two possibilities:

(a)
σ + ρβ + 1 − η

α
= −1, (b)

σ + ρβ + 1 − η
α

< −1 . (3.28)

If (a) holds, then σ + ρβ + 1 = η − α. From (3.27), we get that (3.21) holds, and according to Theorem
2.9-(iii), x ∈ SV. Thus, ρ = 0 and (a) implies that σ = η − α − 1. On the other hand, if (b) holds, from (3.27),
by Theorem 2.9-(ii), we obtain

xn ∼
n
σ+ρβ+1−η

α +1ω
1
α
n ξ
− 1
α

n l
β

α
n

(−(σ + ρβ + 1))
1
α

(

− σ+ρβ+1−η
α − 1

)
, n→∞. (3.29)

Thus it must be

ρ =
σ + ρβ + 1 − η

α
+ 1, (3.30)

implying that the regularity index of x is given by (3.9). Combined this with the assumption ρ < 0, we get
that σ < η − α − 1. Moreover, using (3.9) i.e. (3.30), we obtain

(−(σ + ρβ + 1))
1
α

(

−
σ + ρβ + 1 − η

α
− 1

)

=
(

(α − η − ρα)(−ρ)α
)

1
α
, (3.31)

and

n
σ+ρβ+1−η

α +1ξ
− 1
α

n ω
1
α
n l

β

α
n =

(

nα+1p−1
n qn

)
1
α

x
β

α
n . (3.32)

Then, from (3.29) we obtain that the asymptotic representation of x is given by (3.22). �

Lemma 3.7. Let p ∈ RV(η), η > α and q ∈ RV(σ). For any x ∈ M−0,0 ∩ RV(ρ) with ρ ≤ α−η
α only one of the

following two statements holds:

(i) ρ =
α − η
α

and

xn ∼
α

η − αn
α−η
α ξ
− 1
α

n

( ∞
∑

k=n

k−1ωkl
β

k

)

1
α

, n→∞; (3.33)

Then, it is σ = β
η − α
α
− 1.

(ii) ρ is given by (3.9) and (3.22) holds. Then, it is σ < β
η − α
α
− 1.
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Proof. Suppose that (E) has a solution x ∈ M−0,0 ∩ RV(ρ) with ρ ≤ α−η
α , satisfying xn > 0, ∆xn < 0 for

n ≥ n0 + 1 ≥ 2 and expressed with (3.2). Using (3.1) and (3.2) we have (3.23). As in the proof of previous
lemma, the fact that x[1]

n = pn(∆xn)α → 0 as n→∞ implies that σ + ρβ ≤ −1.
If σ + ρβ = −1, then as in the proof of previous lemma we get (3.25), where Ωn is given in (3.24). Using

that η > α, application of Theorem (2.9)-(ii) in (3.25) gives (3.33). Thus, ρ = α−η
α , implying that σ = β η−α

α − 1.
Next we consider the case σ+ρβ < −1. An application of Theorem 2.9-(ii) in (3.23) give us (3.27) implying

as previously two possibilities (a) or (b) in (3.28). However, the case (a) is not possible, because σ+ ρβ < −1
implies

−1 =
σ + ρβ + 1 − η

α
< −

η

α
,

which is a contradiction with η > α. Thus, only (b) in (3.28) can be valid and so from (3.27), as previously, we
obtain that ρ is given by (3.9) and x satisfies (3.22). Since, ρ < α−η

α from (3.9) we conclude that σ < βη

α − β− 1.
�

Now, we are in a position to prove the main results.

Theorem 3.8. Suppose that p ∈ RV(η) and q ∈ RV(σ).
(i) Let η < α. Equation (E) possesses regularly varying solutions x of index ρ < 0 if and only if (3.4) holds.

(ii) Let η > α. Equation (E) possesses regularly varying solutions x of index ρ <
α−η
α if and only if (3.6).

In both cases ρ is given by (3.9) and the asymptotic behavior of any such solution x is governed by the unique
formula (3.22).

Proof. The “only if” part: Suppose that η < α and x ∈ RV(ρ) with ρ < 0. According to Theorem 2.7-(v)
and (vi), x ∈M− and limn→∞ xn = 0. It is easy to prove (see [6, Lemma 3]) that if S = ∞, then for any solution
in the classM−, it holds limn→∞ xn

[1] = 0. Thus, x ∈M−0,0. Then, it is clear that only the case (ii) of Lemma
3.6 is admissible for x. Thus, the regularity index of x is given by (3.9) and σ satisfies (3.4).

Suppose that η > α and x ∈ RV(ρ) with ρ < α−η
α . Since ρ < 0 as previously we conclude that x ∈ M−0 .

Therewith, in view of (3.3), by Theorem 2.7-(vi) we get

lim
n→∞

xn

πn
=
η − α
α

lim
n→∞

n̺−
α−η
α lnξ

1
α
n = 0,

implying that x ∈M−0,0. It is clear that only the case (ii) of Lemma 3.7 is admissible for x, implying that the
regularity index of x is given by (3.9) and that (3.6) holds.

From Lemmas 3.6 and 3.7 we obtain that the asymptotic representation of regularly varying solution x
of index ρ is given by (3.22) in each of two cases (i) and (ii).

The “if” part: We perform the simultaneous proof for both of the cases. From Theorem 3.3 follows the
existence of a solution x ∈M−0,0. It remains to prove that x satisfying (3.15) and (3.17) is a regularly varying
sequence of index ρ. From (3.15) we have

0 < lim inf
n→∞

xn

Xn
≤ lim sup

n→∞

xn

Xn
< ∞,

where Xn is given by (3.8). Application of Lemma 1.2, using (3.11) and (3.17), yields

L = lim sup
n→∞

xn

Xn
≤ lim sup

n→∞

∆xn

∆Xn
= lim sup

n→∞

−
(

1
pk

∑∞
k=n qkx

β

k+1

)1/α

−
(

1
pk

∑∞
k=n qkX

β

k+1

)1/α

≤














lim sup
n→∞

∑∞
k=n qkx

β

k+1
∑∞

k=n qkX
β

k+1















1/α

≤














lim sup
n→∞

−qnx
β

n+1

−qnX
β

n+1















1/α

≤
(

lim sup
n→∞

xn+1

Xn+1

)β/α

= L
β

α .
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Since β < α, from above we conclude that

0 < L ≤ 1 . (3.34)

Similarly, we can see that l = lim infn→∞ xn/Xn satisfies

1 ≤ l < ∞ . (3.35)

From (3.34) and (3.35) we obtain that l = L = 1, which means that xn ∼ Xn, n → ∞ and ensures that x is a
regularly varying solution of (E) with requested regularity index and the asymptotic representation given
by (3.22). �

Theorem 3.9. Suppose that p ∈ RV(η), η < α and q ∈ RV(σ). There exists x ∈ M−0,0 ∩ ntr − SV if and only if
(3.5) holds. All such solutions of (E) enjoy the precise asymptotic formula

xn ∼





















α − β
α

∞
∑

k=n

















1
pk

∞
∑

j=k

q j

















1
α





















α
α−β

, n→∞. (3.36)

Proof. The “only if” part: Suppose that x ∈M−0,0∩ntr−SV. Then, clearly only the statement (i) of Lemma
3.6 could hold. Therefore, ρ = 0, σ = η − α − 1 and x satisfies (3.21). Then, since σ < −1, application of
Theorem 2.9 gives

∞
∑

k=n

















1
pk

∞
∑

j=k

q j

















1
α

∼ 1

(α − η)
1
α

∞
∑

k=n

k−1ξ
− 1
α

k
ω

1
α

k
, n→∞, (3.37)

where we used that σ + 1 = α − η. Denote

zn =

∞
∑

k=n

k−1ξ
− 1
α

k
ω

1
α

k
l
β

α

k
. (3.38)

From Theorem 2.9-(iii) clearly z = {zn} ∈ SV and (3.21) becomes

xn = ln ∼
zn

(α − η)
1
α

, n→∞. (3.39)

From (3.38) and (3.39) we obtain the asymptotic relation

z
− βα
n (−∆zn) ∼ n−1ξ

− 1
α

n ω
1
α
n

(α − η)
β

α2

, n→∞. (3.40)

By (3.39), we have that zn → 0, n → ∞ and clearly {zn} is strictly decreasing. Summing (3.40) from n to ∞,
using Theorem 2.8 and (3.37), we obtain

α

α − βz
1− βα
n ∼ 1

(α − η)
β

α2

∞
∑

k=n

k−1ξ
− 1
α

k
ω

1
α

k
∼ 1

(α − η)
β−α
α2

∞
∑

k=n

















1
pk

∞
∑

j=k

q j

















1
α

, n→∞. (3.41)

Because 1 − β

α > 0, z
1− βα
n → 0, n→∞, so (3.41) yields that the second condition in (3.5) is satisfied as well as

that the asymptotic expression for x is

xn ∼
1

(α − η)
1
α−β















α − β
α

∞
∑

k=n

k−1ξ
− 1
α

k
ω

1
α

k















α
α−β

∼





















α − β
α

∞
∑

k=n

















1
pk

∞
∑

j=k

q j

















1
α





















α
α−β

,
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when n→∞. This completes the “only if” part of the proof of Theorem 3.9.

The “if” part: From Theorem 3.4 we have the existence of a solution x ∈ M−0,0. In the same way as in the
proof of Theorem 3.8, replacing Xn with Tn given by (3.19) and with the application of Lemma 1.2 we obtain
that xn ∼ Tn, n → ∞, implying that such a solution is slowly varying and enjoys the precise asymptotic
behavior (3.36). �

Theorem 3.10. Suppose that p ∈ RV(η), η > α and q ∈ RV(σ). There exists x ∈ M−0,0 ∩ RV
(

α−η
α

)

if and only if

(3.7) holds. All such solutions of (E) enjoy the precise asymptotic behaviour

xn ∼
(

αα−1 α − β
(η − α)α

)
1
α−β

n p
− 1
α

n















∞
∑

k=n

kβqkp
− βα
k















1
α−β

, n→∞. (3.42)

Proof. The “only if” part: Suppose that x ∈M−0,0∩RV
(

α−η
α

)

. Then, clearly only the statement (i) of Lemma

3.7 could hold. Therefore, ρ = α−η
α , σ = β

α η − β − 1 and x satisfies (3.33). From (3.2) and (3.33) we get

ln ∼
α

η − αξ
− 1
α

n Ω
1
α
n , n→∞, (3.43)

where Ωn is given in (3.24). From (3.24), we conclude that Ω ∈ SV, Ωn → 0 as n → ∞ and {Ωn} is strictly
decreasing. We transform (3.43) into the asymptotic relation for Ω

Ω
− βα
n ∆Ωn ∼ −

(

α

η − α

)β

n−1ωnξ
− βα
n = −

(

α

η − α

)β

nβqnp
− βα
n , n→∞. (3.44)

Summing (3.44) from n to∞ and using Theorem 2.8 we obtain

α

α − βΩ
1− βα
n ∼

(

α

η − α

)β ∞
∑

k=n

kβqkp
− βα
k
, n→∞. (3.45)

Because Ω1− βα
n → 0 as n → ∞, (3.45) yields that the second condition in (3.7) is satisfied. The asymptotic

expression (3.33) for x becomes

xn ∼
α

η − αn
α−η
α ξ
− 1
α

n Ω
1
α
n ∼

(

α

η − α

)
α
α−β

n p
− 1
α

n

[

α − β
α

∞
∑

k=n

kβqkp
− βα
k

]

1
α−β

, n→∞.

This completes the “only if” part of the proof of Theorem 3.10.

The “if” part: From Theorem 3.5 we obtain the existence of a solution x ∈M−0,0, while application of Lemma
1.2 as in the proof of Theorem 3.8, with Yn instead of Xn, where Yn is given by (3.20), proves that xn ∼ Yn,

n→∞, so that such a solution is in fact a RV−solution of index α−η
α , with the precise asymptotic behavior

given by (3.42). �

4. Corollaries and examples

In the previous section, we have shown that the existence of strongly decreasing RV−solutions for the
equation (E) with RV coefficients is fully characterized by the assumption I < ∞ if S = ∞ and by the
assumption J < ∞ if S < ∞. In fact, the following corollary holds.

Corollary 4.1. Suppose that p ∈ RV(η), η , α and q ∈ RV(σ).
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(i) Let S = ∞. Equation (E) has strongly decreasing RV-solutions if and only if I < ∞.

(ii) Let S < ∞. Equation (E) has strongly decreasing RV-solutions if and only if J < ∞.

Moreover, if S = ∞, then J = ∞ so by Theorem 1.1M−0,l = ∅. Otherwise, if S < ∞, denoting the series
Q =

∑∞
k=1 qk, we have two cases:

(a) If Q = ∞, then I = ∞, so by Theorem 1.1 we have M− =M−0 i.e. M−B = ∅.
(b) If Q < ∞, then I < ∞, so by Theorem 1.1 we have M− =M−0 ∪M−B .

Using conclusions from the previous corollary and Theorem 1.1, we get the next two corollaries where
we will use the following symbols:
∗ R denote the set of all regularly varying solutions,
∗ R− denote the set of all decreasing regularly varying solutions,
∗ R−0 = R ∩M−0 .
∗ R−0,0 = R ∩M−0,0.

Corollary 4.2. Suppose that p ∈ RV(η), q ∈ RV(σ) and S = ∞. Then,

R− = ntr − SV ∪ RV
(

σ + α + 1 − η
α − β

)

∪M−B

if and only if I < ∞.

Corollary 4.3. Suppose that p ∈ RV(η), q ∈ RV(σ) and S < ∞. Then,

(i) If σ < −1 or σ = −1 and Q < ∞, then

R− = RV
(

σ + α + 1 − η
α − β

)

∪M−0,l ∪M
−
B .

(ii) If σ = −1 and Q = ∞ or −1 < σ < βη

α − β − 1, then

R− = R−0 = RV
(

σ + α + 1 − η
α − β

)

∪M−0,l.

(iii) If σ =
βη

α − β − 1 and J < ∞, then

R− = R−0 = RV
(α − η
α

)

∪M−0,l.

(iv) If σ =
βη

α − β − 1 and J = ∞ or σ >
βη

α − β − 1, then

R− = ∅.

Example 4.4. Consider the difference equation

∆

(

nη

log n
(∆xn)3

)

=
nη−7ϕn

log5 n

√

xn+1
3, n ≥ 1, (4.1)

where ϕn is a positive real-value sequence such that limn→∞ ϕn = δ and η , 3. In this equation, α = 3, β =
3
2
,

{pn} ∈ RV(η) and {qn} ∈ RV(σ), where σ = η − 7.
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(i) Suppose that η < 3. In this case

σ = η − 7 < η − 4 = η − α − 1,

so in view of Theorem 3.8-(i) and Theorem 1.1 this equation has a strongly decreasingRV-solution of index
ρ < 0 as well as a solution inM−

B
= tr−SV.More precisely, by Theorem 3.8-(i) equation (4.1) has a strongly

decreasing solution which belongs to RV(−2). That solution has asymptotic behavior

xn ∼
(

δ

8(9 − η)

)
2
3

n−2 (log n)−
8
3 , n→∞. (4.2)

If

ϕn =
n7(n + 1)3

(log n)4 (log(n + 1))5

(

(log n)9ψn − (log(n + 1))9
(

n + 1
n

)η

ψn+1

)

, (4.3)

where

ψn =















1
n2 −

1
(n + 1)2

(

log n

log(n + 1)

)
8
3














3

,

then δ = 8(9 − η) and the considered equation has an exact solution n−2 (log n)−
8
3 .

(ii) For η ∈ (3, 9) we have that η > α and σ = η − 7 < η−5
2 =

βη

α − β − 1, so in view of Theorem 3.8-(ii) the
equation (4.1) has a strongly decreasing solution which belongs toRV(−2) and satisfies (4.2). This equation
also possess a solution which belongs to a classM−0,l.

(iii) Let η = 9. Then, σ = 2 =
βη

α
− β − 1 and J < ∞. By Theorem 3.10 the equation (4.1) has a solution

x ∈ RV(1 − η

α ) = RV(−2) and any such solution x has the asymptotic representation

xn ∼
(

δ

16

)

2
3

n−2(log n)
1
3















∞
∑

k=n

k−1(log k)−
9
2















2
3

∼
(

δ

16

)

2
3

n−2(log n)
1
3

(2
7

)
2
3

(log n)−
7
3 =

(

δ

56

)

2
3

(n log n)−2, n→∞,

where we used that
∞
∑

k=n

k−1(log k)−
9
2 ∼

∫ ∞

n

x−1(log x)−
9
2 dx, n→∞ .

If

ϕn =
(n + 1)3(log(n + 1))3(log n)5

n2 (χn − χn+1),

where

χn =
n3

(log n)7













1 −
(

n log n

(n + 1) log(n + 1)

)2










3

,

then limn→∞ ϕn = 56 and xn = (n log n)−2 is an exact solution of the equation (4.1).
(iv) If η > 9, then σ = η − 7 > η−5

2 =
βη

α − β − 1 so J = ∞. Therefore, by Corollary 4.1 the equation (4.1)
does not have decreasing regularly varying solutions.

Example 4.5. Consider the difference equation

∆
(

−nη
√

log n (∆xn)2
)

=
nη−3 ϕn

(log n)19/6
3
√

xn+1, n ≥ 1, (4.4)
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where ϕn is a positive real-value sequence such that limn→∞ ϕn = δ and η , 2. Here, pn = nη
√

log n, and
qn = nη−3 ϕn (log n)−19/6, so p ∈ RV(η) and q ∈ RV(σ), where σ = η − 3 = η − α − 1.

Let η < 2 = α. Using that

∞
∑

k=n

















1
pk

∞
∑

j=k

q j

















1
α

∼
∞
∑

k=n

√

ϕn

2 − η
1

k (log k)11/6
< ∞, n→∞,

by Theorem 3.10 the equation (4.4) has a nontrivial slowly varying solution and any such solution x has the
asymptotic representation

xn ∼
(

δ

2 − η

)
3
5

· (log n)−1, n→∞.

If

ϕn = n3
(

log n

log(n + 1)

)
19
6














(log n+1
n )2

(log n)
3
2 (log(n + 1))

1
2

−
(

n + 1
n

)η












log n+2
n+1

log(n + 2)













2












,

then δ = 2 − η and considered equation has an exact solution xn = (log n)−1, x ∈ ntr − SV.
Notice that in the case η > 2 = α, since σ > βη

α − β − 1, using Corollary 4.3, we conclude that R− = ∅.
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