Filomat 33:9 (2019), 2751-2770 https://doi.org/10.2298/FIL1909751K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://wwur. pmf.ni .ac.rs/filomat

Positive Strongly Decreasing Solutions of Emden-Fowler Type Second-Order Difference Equations with

Regularly Varying Coefficients
Aleksandra B. Kapešića, Jelena V. Manojlovića
${ }^{\text {aUn University of Nisi, Faculty of Science and Mathematics, Department of Mathematics, Visisegradska 33, } 18000 \text { Niš, Serbia }}$

Abstract. Positive decreasing solutions of the nonlinear difference equation

$$
\Delta\left(p_{n}\left|\Delta x_{n}\right|^{\mid-1} \Delta x_{n}\right)=q_{n}\left|x_{n+1}\right| \beta^{\beta-1} x_{n+1}, \quad n \geq 1, \quad \alpha>\beta>0,
$$

are studied under the assumption that p, q are regularly varying sequences. Necessary and sufficient shown that the asymptotic behavior of all such solutions is governed by a unique formula.

1. Introduction

Consider the nonlinear difference equation of second order
(E)

```
\Delta(p}|||\mp@subsup{x}{n}{}\mp@subsup{|}{}{\alpha-1}\Delta\mp@subsup{x}{n}{})=\mp@subsup{q}{n}{}|\mp@subsup{x}{n+1}{}\mp@subsup{|}{}{\beta-1}\mp@subsup{x}{n+1}{},\quadn\geq1
```

where α and β are positive constants such that $\alpha>\beta, p=\left\{p_{n}\right\}, q=\left\{q_{n}\right\}$ are positive real sequences and Δ is forward difference operator defined as $\Delta x_{n}=x_{n+1}-x_{n}$. In our case, when $\alpha>\beta$, equation (E) is said to be sub-half-linear, while otherwise, for $\alpha=\beta$ or $\alpha<\beta$ equation (E) is called half-linear or super-half-linear, espectively.
By a solution of (E) we mean a not trivial real sequence $x=\left\{x_{n}\right\}$ satisfying (E). A solution x of th equation (E) is called oscillatory if for every $M \in \mathbb{N}$ there exist $m, n \in \mathbb{N}, M \leq m<n$ such that $x_{m} x_{n}<0$,
otherwise, it is called nonoscillatory. In other words, a solution x is called nonoscillatory if it is eventually positive or eventually negative. It is known that every solution of (E) is nonoscillatory. If $x=\left\{x_{n}\right\}$ is a solution of (E), then clearly $-x=\left\{-x_{n}\right\}$ is also a solution. Thus, in studying nonoscillatory solutions of (E), for the sake of simplicity, we restrict ourself to solutions which are eventually positive. Any such solution $\left\{x_{n}\right\}$ is eventually strongly monotone and belongs to one of the two classes listed below (see [6, Lemma 1])
$\mathbb{M}^{+}=\left\{x\right.$ solution of $(E) \mid \exists n_{0} \geq 1: x_{n}>0, \Delta x_{n}>0$, for $\left.n \geq n_{0}\right\}$,
$\mathbb{M}^{-}=\left\{x\right.$ solution of $(E) \mid x_{n}>0, \Delta x_{n}<0$, for $\left.n \geq 1\right\}$.
2010 Mathematics Subject Classification. Primary 39A22; Secondary 39A12, 26A12
Keyworfst. Emden-Fowler differce equation, ,onlinear difference equations, asymptotic behavior, strongly decreasing solution, regularly varying sequence, discrete regular variation
Received: 24 September
Received. 2 September 2018; Revised: 21 January 2019; Accepted: 13 March 2019
Communicated by Milima Iovanovic

Positive strongly decreasing solutions of Emden-Fowler type second-order difference equations with regularly varying coefficients

Aleksandra B. Kapešíća
${ }^{a}$ University of Niš, Faculty of Science and Mathematics,
Department of Mathematics,
Višegradska 33, 18000 Niš, Serbia

1 Introduction

Good morning. How are you doing? (Answer) OK, let's begin. Today, I am going to talk about Emden-Fowler type difference equation. This type of equation we have already observe, but in the continuous case. Now, we move to the discrete case. Why is this equation modeling As we said in previous classes, differential equations play an important role io bridge design to interaction between neurons. Differential equations such as those used to solve real-life problems do not necessarily have to be directly solvable. On the other hand in the last fifty years, the application of difference equations in solving many problems in statistics, engineering and science in general has experienced expansion. The development statistics, engineering and science in general has experienced expansion. The development
of high-speed digital computer technology has motivated the application of difference equaof high-speed digital computer technology has motivated the application of difference equa-
tions to ordinary and partial differential equations. Apart from this, difference equations are very useful for analyzing electrical, mechanical, thermal and other systems, the behavior of electric-wave filters and other filters, insulator strings, crankshafts of multi-cylinde unge and so on. One of the most studied second-order nonliner differential equations
(1.1)

$$
\left(p(t)\left|x^{\prime}\right|^{\alpha-1} x^{\prime}\right)=q(t)|x|^{\beta-1} x, \quad \alpha, \beta>0
$$

where p, q are continuous positive functions on $[a, \infty)$. Along with the differential equation (1.1), discrete counterpart of this equation
(E)

$$
\Delta\left(p_{n}\left|\Delta x_{n}\right|^{\alpha-1} \Delta x_{n}\right)=q_{n}\left|x_{n+1}\right|^{\beta-1} x_{n+1}, \quad n \geq 1,
$$

where α and β are positive constants such that $\alpha>\beta, p=\left\{p_{n}\right\}, q=\left\{q_{n}\right\}$ are positive rea sequences and Δ is forward difference operator defined as $\Delta x_{n}=x_{n+1}-x_{n}$ has attracted many researchers. Today, we will talk about the equation (E). We'll look at how to find necessary and sufficient conditions for the existence of regularly varying solutions. Also, our goal is to determine the asymptotic formula for all solutions of equation that we consider. I would like to stress that there are similarities between equations (1.1) and (E), but we will notice some differences as well. Let us start with some basic concepts. As you can see from (E), this equation is nonlinear (pointing to α and β) difference equation of second order (indicating that the operator Δ appears twice). We say that equation (E) is sub-half-linear, or just, sub-linear when $\alpha>\beta$ while otherwise, for $\alpha=\beta$ or $\alpha<\beta$ equation (E) is called half-linear or super-half-linear, respectively
I said at the beginning that we will discuss about solutions of equation (E). What do we
A. B. Kapešić, J. V. Manoilović/ Filomat 33:9 (2019), 2751-2770

It is well-known that the differential equation

$\left(p(t)\left|x^{\prime}\right|^{\alpha-1} x^{\prime}\right)=q(t)|x|^{-1} x, \quad \alpha, \beta>0$,
where p, q are continuous positive functions on $[a, \infty)$, may have a nontrivial solution x, with the property that there exists $T_{x}<\infty$, such that $x(t) \equiv 0$ on $\left[T_{x}, \infty\right)$. Such a solution is said to be extinct singular solution or singular solution of the first kind. On the contrary, such solutions of difference equation (E) do not exists. One more difference between differential and difference equations is that for the differential equation (1.1) classes M^{+}and M^{-}can be empty, while for the difference equation (E), this case cannot occur (see $[6]$ and $[1$, Section 5.3]). The asymptotic behaviour of nonoscillatory solutions for nonlinear second-order difference equations has been studied in many papers, see, e.g. [2, 3], [6]-[12], [27], [38], the monograph [1] and eferences therein.
For any solution x of (E) denote by $x^{[1]}=\left\{x_{n}^{[1]}\right\}$ its quasi-difference $x_{n}^{[1]}=p_{n}\left|\Delta x_{n}\right|^{\alpha-1} \Delta x_{n}$. Thus, under our assumptions, the classes \mathbb{M}^{+}and \mathbb{M}^{-}can be a-priori divided into the following subclasses:

$$
\begin{aligned}
\mathbb{M}_{\infty, \infty}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=\infty, \lim _{n} x_{n}^{[1]}=\infty,\right\}, \\
\mathbb{M}_{\infty, l}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=\infty, \lim _{n} x_{n}^{[1]}=l, 0<l<\infty\right\}, \\
\mathbb{M}_{k, \infty}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=k, 0<k<\infty, \lim _{n}^{[1]} x_{n}^{[1]}=\infty\right\}, \\
\mathbb{M}_{k, l}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=k, 0<k<\infty, \lim _{n} x_{n}^{[1]}=l, 0<l<\infty\right\}, \\
\mathbb{M}_{k, l}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=k, 0<k<\infty, \lim _{n} x_{n}^{[1]}=-l, 0<l<\infty\right\}, \\
\mathbb{M}_{0, l}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=0, \lim _{n}^{[1]}=-l, 0<l<\infty\right\} \\
\mathbb{M}_{k, 0}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=k, 0<k<\infty, \lim _{n}^{[1]} x_{n}^{[1]}=0\right\}, \\
\mathbb{M}_{0,0}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=0, \lim _{n} x_{n}^{[1]}=0\right\} .
\end{aligned}
$$

A solution $x \in \mathbb{M}_{\infty, \infty}^{+}$is said to be strongly increasing and a solution $x \in \mathbb{M}_{0}^{-}$is said to be strongly decreasing or strongly decaying. For solutions which tends to some constant we use $\mathbb{M}_{B}^{-}=\mathbb{M}_{k, 0}^{-} \cup \mathbb{M}_{k, l}^{-}, \mathbb{M}_{B}^{+}=\mathbb{M}_{k, \infty}^{+} \cup \mathbb{M}_{k, l}^{+}$ and for decreasing solutions which tends to zero we use $\mathrm{M}_{0}^{-}=\mathrm{M}_{-}^{-}, \cup \mathrm{M}^{-}$

$$
S=\sum_{n=1}^{\infty} \frac{1}{p_{n}^{1 / \alpha}} .
$$

Depending on whether $S=\infty$ or $S<\infty$ some of the above classes may be empty
(i) If $S=\infty$ then

$$
\mathbb{M}^{+}=\mathbb{M}_{\infty, \infty}^{+} \cup \mathbb{M}_{\infty, l}^{+} \text {and } \mathbb{M}^{-}=\mathbb{M}_{k, 0}^{-} \cup \mathbb{M}_{0,0}^{-} \text {, i.e. } \quad \mathbb{M}_{B}^{+}=\emptyset, \mathbb{M}_{0, l}^{-} \cup \mathbb{M}_{k, l}^{-}=\emptyset .
$$

(ii) If $S<\infty$ then

$$
\mathbb{M}^{+}=\mathbb{M}_{\infty, \infty}^{+} \cup \mathbb{M}_{B}^{+} \quad \text { and } \quad \mathbb{M}^{-}=\mathbb{M}_{0}^{-} \cup \mathbb{M}_{B}^{-} \text {, i.e. } \mathbb{M}_{\infty, l}^{+}=\emptyset \text {. }
$$

In this paper, we consider only positive decreasing solutions, i.e. solutions in \mathbb{M}^{-}. Concerning the existence of solutions in the classes \mathbf{M}_{B}^{-}and $\mathbb{M}_{0,1}^{-}$, the following holds.

Theorem 1.1. (i) Equation (E) has solutions in \mathbb{M}_{B}^{-}if and only if

$$
I=\sum_{n=1}^{\infty}\left(\frac{1}{p_{n}} \sum_{k=n}^{\infty} q_{k}\right)^{\frac{1}{4}}<\infty .
$$

mean when we say that x is the solution of the equation (E) ? By a solution of (E) we mean a not trivial real sequence $x=\left\{x_{n}\right\}$ satisfying (E). Which means not trivial? A solution x of the equation (E) is called oscillatory if for every $M \in \mathbb{N}$ there exist $m, n \in \mathbb{N}$, $M \leq m<n$ such that $x_{m} x_{n}<0$, otherwise, it is called nonoscillatory. In other words, a solution x is called nonoscillatory if it is eventually positive or eventually negative. Every solution of (E) is nonoscillatory. If $x=\left\{x_{n}\right\}$ is a solution of (E), then $-x=\left\{-x_{n}\right\}$ is also a solution. Why? (Answer) Thus, there is no need to investigate both cases, and we restrict ourselves to solutions that are eventually positive. Any such solution $\left\{x_{n}\right\}$ is eventually strongly monotone and belongs to one of the two classes

$$
\begin{aligned}
& \mathbb{M}^{+}=\left\{x \text { solution of }(E) \mid \exists n_{0} \geq 1: x_{n}>0, \quad \Delta x_{n}>0, \text { for } n \geq n_{0}\right\}, \\
& \mathbb{M}^{-}=\left\{x \text { solution of }(E) \mid x_{n}>0, \quad \Delta x_{n}<0, \text { for } n \geq 1\right\} .
\end{aligned}
$$

The first class is a set of solutions of (E) that are eventually positive and increasing, and the second class represents positive and decreasing solutions of equation (E). In previous classes, we dealt with differential equation like this one (1.1) and we showed that this equation can have an extinct singular solution, i.e. a solution that for all $t>T_{x}$, where T_{x} is some real number, is equal to zero. On the contrary, such solutions of the difference equation (E) do not exist. What's really interesting here is one more difference between differential and difference equations. Classes \mathbb{M}^{+}and \mathbb{M}^{-}can be empty for the differential equation (1.1), but not for the difference equation (E). If you want to find out more about it, check the reference given in the handout. Now, I'd like to introduce you the term "quasidifference". It's expression that appears in the bracket on the left hand side of our equation i.e. $x_{n}^{[1]}=p_{n}\left|\Delta x_{n}\right|^{\alpha-1} \Delta x_{n}$ and $x^{[1]}=\left\{x_{n}^{1+}\right\}$. We divide the classes \mathbb{M}^{+}and \mathbb{M}^{-}into the following subclasses:

$$
\begin{aligned}
\mathbb{M}_{\infty, \infty}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=\infty, \quad \lim _{n} x_{n}^{[1]}=\infty,\right\}, \\
\mathbb{M}_{\infty, l}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=\infty, \quad \lim _{n} x_{n}^{[1]}=l, 0<l<\infty\right\}, \\
\mathbb{M}_{k, \infty}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=k, \quad 0<k<\infty, \quad \lim _{n} x_{n}^{[1]}=\infty\right\}, \\
\mathbb{M}_{k, l}^{+} & =\left\{x \in \mathbb{M}^{+}: \lim _{n} x_{n}=k, 0<k<\infty, \quad \lim _{n}^{[1]} x_{n}^{[1]}=l, 0<l<\infty\right\}, \\
\mathbb{M}_{k, l}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=k, \quad 0<k<\infty, \quad \lim _{n} x_{n}^{[1]}=-l, 0<l<\infty\right\}, \\
\mathbb{M}_{0, l}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=0, \quad \lim _{n} x_{n}^{[1]}=-l, 0<l<\infty\right\} \\
\mathbb{M}_{k, 0}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=k, \quad 0<k<\infty, \quad \lim _{n} x_{n}^{[1]}=0\right\}, \\
\mathbb{M}_{0,0}^{-} & =\left\{x \in \mathbb{M}^{-}: \lim _{n} x_{n}=0, \quad \lim _{n} x_{n}^{[1]}=0\right\} .
\end{aligned}
$$

A strongly increasing solution is one from \mathbb{M}^{+}and strongly decreasing solutions are solutions from class $\mathbb{M}_{0,0}^{-}$. For solutions which tends to some constant we use $\mathbb{M}_{B}^{-}=\mathbb{M}_{k, 0}^{-} \cup \mathbb{M}_{k, l}^{-}$ $\mathbb{M}_{B}^{+}=\mathbb{M}_{k, \infty}^{+} \cup \mathbb{M}_{k, l}^{+}$and for decreasing solutions which tends to zero we use $\mathbb{M}_{0}^{-}=\mathbb{M}_{0, l}^{-} \cup \mathbb{M}_{0,0}^{-}$ The existence of the solutions of an equation (E) will depend on whether the sum

$$
S=\sum_{n=1}^{\infty} \frac{1}{p_{n}^{1 / \alpha}}
$$

(ii) Equation (E) has solutions in $\mathbb{M}_{0,1}^{-}$if and only if

$$
J=\sum_{n=1}^{\infty} q_{n}\left(\sum_{k=n}^{\infty} \frac{1}{p_{k+1}^{1 / \alpha}}\right)^{\beta}<\infty .
$$

The assertion (i) follows from [6, Theorem 2 and Theorem 5-(a)], while the assertion (ii) follows from [8, Theorem 2.2 and Theorem 3.1] and [27, Theorem 9].
As regards to the existence of strongly decreasing solutions, it is an open problem. The existence of strongly decreasing solutions in the continuous case, that is for the differential equation (1.1), can be proved as in [37] with the help of fixed point theory by proving that the operator

$$
(\mathcal{F} x)(t)=\int_{t}^{\infty}\left(\frac{1}{p(s)} \int_{s}^{\infty} q(r) x(r)^{\beta} d r\right)^{\frac{1}{n}} d s
$$

has a nonzero fixed point. To this end the operator \mathcal{F} acts on the set

$$
\Omega=\left\{x \in C\left[t_{0}, \infty\right]: z(t) \leq x(t) \leq z\left(t_{0}\right), t \geq t_{0}\right\},
$$

where z is a singular solution of the first kind of (1.1). The second approach, due to [34], is to construct the sequence $\left\{x_{n}\right\}$ of asymptotically constant solutions of differential equation (1.1), having the limit function x_{1} and it gives rise to a positive strongly decreasing solution of (1.1). This approach, however, requires lower bound for such a sequence of solutions, which is again given by a singular solution of the first kind of (1.1). Clearly, due to the nonexistence of singular solutions in the discrete case, neither of these two approache work.
The recent development of asymptotic analysis of ordinary differential equations by means of regularly varying functions (see [17]-[19],[23]-[26], [29], [33]-[35] and monograph [28] for results up to 2000.), suggests
to investigate the discrete problem of the existence of strongly decreasing solutions in the framework of regularly varying sequences. The aim of this paper is twofold. We will determine conditions for the existence of strongly decreasing solutions and give an explicit asymptotic formula for those solutions.
The theory of regularly varying sequences, sometimes called Karamata sequences, was initiated in 1930 by Karamata [22] and further developed in the seventies by Galambos, Seneta and Bojanić in $[5,16]$ and
recently in 14,15$]$. However, until the papers of Matucci and Rehak [30 31] the relation betweer regularly varying sequences and difference equations has never been discussed. In these two papers, as well as in succeeding papers [32,36$]$, the theory of regularly varying sequences has been further developed and applied in the asymptotic analysis of second-order linear and half-linear difference equations, providing necessary and sufficient conditions for the existence of regularly varying solutions of these equations. Afterward, further development of discrete regularly varying theory and application to second-order nonlinear difference equations of Emden-Fowler type was done by Agarwal and Manojlović in [3], Kapešićc sufficient conditions for the existence of strongly increasing regularly varying solutions of (E) and obtained a precise asymptotic representation of such solutions. Thus, the purpose of this paper is to proceed further in this direction and to establish results which can be considered as a discrete analog of results in the continuous case (see e.g. [17, 25, 29]).
Throughout this paper, symbol \sim is used to denote the asymptotic equivalence of two positive sequences, i.e.

$$
x_{n} \sim y_{n}, n \rightarrow \infty \Leftrightarrow \lim _{n \rightarrow \infty} \frac{y_{n}}{x_{n}}=1 .
$$

Our main tools are, besides the theory of regularly varying sequences presented in Section 2, the fixed point technique and Stolz-Cezaro theorem. Thus, we re
as Knaster-Tarski fixed point theorem [1, Theorem 5.2.1].
is convergent or divergent. Really, if S is divergent, then our equation does not have increasing solutions that tend to constant as well as decreasing solutions whose quasidifference tends to a negative constant. When S is convergent, we know that there cannot be increasing solutions that tend to infinity and whose quasi-difference tends to a positive constant.
(i) if $S=\infty$ then

$$
\mathbb{M}^{+}=\mathbb{M}_{\infty, \infty}^{+} \cup \mathbb{M}_{\infty, l}^{+} \quad \text { and } \quad \mathbb{M}^{-}=\mathbb{M}_{k, 0}^{-} \cup \mathbb{M}_{0,0}^{-} \text {, i.e. } \quad \mathbb{M}_{B}^{+}=\emptyset, \mathbb{M}_{0, l}^{-} \cup \mathbb{M}_{k, l}^{-}=\emptyset .
$$

(ii) If $S<\infty$ then

$$
\mathbb{M}^{+}=\mathbb{M}_{\infty, \infty}^{+} \cup \mathbb{M}_{B}^{+} \quad \text { and } \quad \mathbb{M}^{-}=\mathbb{M}_{0}^{-} \cup \mathbb{M}_{B}^{-} \text {, i.e. } \quad \mathbb{M}_{\infty, l}^{+}=\emptyset
$$

Because we're talking about decreasing solutions, we're only interested in solutions from the \mathbb{M}^{-}
Concerning the existence of solutions in the classes \mathbb{M}_{B}^{-}and $\mathbb{M}_{0, l}^{-}$, the following holds.
Theorem 1.1 (i) Equation (E) has solutions in \mathbb{M}_{B}^{-}if and only if

$$
I=\sum_{n=1}^{\infty}\left(\frac{1}{p_{n}} \sum_{k=n}^{\infty} q_{k}\right)^{\frac{1}{\alpha}}<\infty .
$$

(ii) Equation (E) has solutions in $\mathbb{M}_{0, l}^{-}$if and only if

$$
J=\sum_{n=1}^{\infty} q_{n}\left(\sum_{k=n}^{\infty} \frac{1}{p_{k+1}^{1 / \alpha}}\right)^{\beta}<\infty
$$

Let's go back to the differential equation. As we saw, there arpproaches how to determine conditions for the existence of solutions. On the other hand, in the discrete case, neither of these two approaches works. Therefore, we will use the theory of regular variation in order to solve our problem and find asymptotic formulas for solutions of equation (E). Is there anyone who wants to tell us the definition of regularly varying sequences? Which is the most famous theorem? Our main tools are, besides the theory of regularly varying sequences, the fixed point technique and Stolz-Cezaro theorem. Which fixed point theorem we often use? What is the Stolz-Cezaro theorem about?
After this preliminary step, we can go back to the main procedure. We assume that p and q are regularly varying sequences of indices η and σ respectively. How can we express them? Yes, we use the following expressions:
(1.2) $\quad p_{n}=n^{\eta} \xi_{n} \quad q_{n}=n^{\sigma} \omega_{n}, \quad \xi=\left\{\xi_{n}\right\}, \omega=\left\{\omega_{n}\right\} \in \mathcal{S} \mathcal{V}$

Since, we are looking for strongly decreasing $\mathcal{R} \mathcal{V}$-solutions we will expressed them in the same way
(1.3)

$$
x_{n}=n^{\rho} l_{n}, \quad l=\left\{l_{n}\right\} \in \mathcal{S} \mathcal{V} .
$$

Because of the computational difficulty, we do not consider the case $\eta=\alpha$. Which cases remain to be investigated? Yes, we distinguish two cases, $\eta<\alpha$ and $\eta>\alpha$. The first
A. B. Kapesić I V Manoilović/ Filomat 33.9(2019) 2751-2770

Lemma 1.2. If $f=\left\{f_{n}\right\}$ is a strictly increasing sequence of positive real numbers, such that $\lim _{n \rightarrow \infty} f_{n}=\infty$, then for any sequence $g=\left\{g_{n}\right\}$ of positive real numbers one has the inequalities,

$$
\liminf _{n \rightarrow \infty} \frac{\Delta f_{n}}{\Delta g_{n}} \leq \liminf _{n \rightarrow \infty} \frac{f_{n}}{g_{n}} \leq \underset{n \rightarrow \infty}{\lim \sup } \frac{f_{n}}{g_{n}} \leq \underset{n \rightarrow \infty}{\limsup } \frac{\Delta f_{n}}{\Delta g_{n}} .
$$

In particular, if the sequence $\left\{\Delta f_{n} / \Delta g_{n}\right\}$ has a limit, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f_{n}}{g_{n}}=\lim _{n \rightarrow \infty} \frac{\Delta f_{n}}{\Delta g_{n}} . \tag{1.2}
\end{equation*}
$$

Lemma 1.3. Let $f=\left\{f_{n}\right\}, g=\left\{g_{n}\right\}$ be sequences of positive real numbers, such that
(i) $\lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} g_{n}=0$;
(ii) the sequence g is strictly monotone
(iii) the sequence $\left\{\Delta f_{n} / \Delta g_{n}\right\}$ has a limit.
(12) holds.

Lemma 1.4. (Knaster-Tarski fixed point theorem) Let X be a partially ordered Banach space with ordering \leq Let M be a subset of X with the following properties: The infimum of M belongs to M and every nonempty subset of Then \mathcal{F} has a fixed point in M.

2. Regularly Varying Sequences

We state here definitions and some basic properties of regularly varying sequences which will be essentia in establishing our main results on the asymptotic behavior of nonoscillatory solutions stated and proved in establishing our main results on the asymptotic behavior of nonoscillatory solutions stated and proved
in the next section. For a comprehensive treatise on regular variation, the reader is referred to Bingham et al. [4].
Two main approaches are known in the basic theory of regularly varying sequences: the approach due to Karamata [22], based on a definition that can be understood as a direct discrete counterpart of elegan and straightforward continuous definition (see Definition 2.2), and the approach due to Galambos and Seneta, based on purely sequential definition.

Definition 2.1. (Karamata [22]) A positive sequence $y=\left\{y_{k}\right\}, k \in \mathbb{N}$ is said to be regularly varying of index $\rho \in \mathbb{R}$ if

$$
\lim _{k \rightarrow \infty} \frac{y_{[\lambda k]}}{y_{k}}=\lambda^{\rho} \text { for } \quad \forall \lambda>0,
$$

where $[u]$ denotes the integer part of u.
Definition 2.2. A measurable function $f:(a, \infty) \rightarrow(0, \infty)$ for some $a>0$ is said to be regularly varying at infinity of index $\rho \in \mathbb{R}$ if

$$
\lim _{t \rightarrow \infty} \frac{f(\lambda t)}{f(t)}=\lambda^{\rho} \text { for all } \lambda>0 .
$$

Definition 2.3. (Galambos and Seneta [16) A positive sequence $y=\left\{y_{k}\right\}, k \in \mathbb{N}$ is said to be regularly varying of index $\rho \in \mathbb{R}$ if there exists a positive sequence $\left\{\alpha_{k}\right\}$ satisfying

$$
\lim _{k \rightarrow \infty} \frac{y_{k}}{\alpha_{k}}=C, 0<C<\infty \quad \lim _{k \rightarrow \infty} k \frac{\Delta \alpha_{k-1}}{\alpha_{k}}=\rho .
$$

If $\rho=0$, then y is said to be slowly varying
implies that S is divergent, and the second implies that S is convergent. In the first case any strongly decreasing solution of (E) is less than or equal to some constant. What can we say about the regularity index? If $\rho=0$ is x is a trivial or non trivial RV-solution? If $\eta>\alpha$, using discrete Karamata's theorem, we have
(1.4) $\pi_{n}=\sum_{k=n}^{\infty} \frac{1}{p_{k}^{1 / \alpha}}=\sum_{k=n}^{\infty} k^{-\frac{\eta}{\alpha}} \xi_{k}^{-\frac{1}{\alpha}} \sim \frac{\alpha}{\eta-\alpha} n^{\frac{\alpha-\eta}{\alpha}} \xi_{n}^{-\frac{1}{\alpha}}=\frac{\alpha}{\eta-\alpha} \cdot \frac{n}{p_{n}^{1 / \alpha}}, \quad n \rightarrow \infty$,
so that $\left\{\pi_{n}\right\} \in \mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{\alpha}\right)$. Since,

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{\pi_{n}}=\lim _{n \rightarrow \infty} \frac{\Delta x_{n}}{-\frac{1}{p_{n} \frac{1}{\alpha}}}=\lim _{n \rightarrow \infty}\left(x_{n}{ }^{[1]}\right)^{\frac{1}{\alpha}}=0,
$$

we conclude that index of regularity strongly decreasing solutions is less then or equal to index of regularity of π_{n}, which is $\frac{\alpha-\eta}{\alpha}$. What happens if $\rho=\frac{\alpha-\eta}{\alpha}$? Whether these solutions are trivial or non-trivial?
We already indicate that continuous and discrete case have differences, but they also have similarities. Does anyone remember under what conditions the differential equation (1.1) has strongly decreasing solutions? What I want to emphasize is that we will obtain the similar result here. Actually, we have

Theorem 1.2 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta)$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. (i) Let $\eta<\alpha$. If $I<\infty$, then $\mathbb{M}_{0,0}^{-} \neq \emptyset$. (ii) Let $\eta>\alpha$. If $J<\infty$, then $\mathbb{M}_{0,0}^{-} \neq \emptyset$.
Series I and J are given in the first part of the lecture. So, to clarify, our equation has a strongly decreasing solution if I in the first case and J in the second are convergent. In order to prove the previous theorem, we can see that (i) for $\eta<\alpha, I<\infty$ if and only if

$$
\sigma<\eta-\alpha-1
$$

or
(1.6) $\quad \sigma=\eta-\alpha-1$ and $\sum_{k=1}^{\infty} k^{-1}\left(\frac{\omega_{k}}{\xi_{k}}\right)^{\frac{1}{\alpha}}<\infty$;
(ii) for $\eta>\alpha, J<\infty$ if and only if
or
(1.8)

$$
\sigma=\frac{\beta \eta}{\alpha}-\beta-1 \quad \text { and } \quad \sum_{k=1}^{\infty} k^{-1} \frac{\omega_{k}}{\xi_{k}^{\beta / \alpha}}<\infty .
$$

Taking the preceding considerations into account, the Theorem 1.2 will be proven by considering these four cases.

The totality of regularly varying sequences of index ρ and slowly varying sequences will be denoted, espectively, by $\mathcal{R} \mathcal{V} \rho)$ and $\mathcal{S V}$.
Bojanić and Seneta have shown in [5] that Definition 2.1 and Definition 2.3 are equivalent
Bojanic and Seneta have shown in 5] that Definition 2.1 and Definition 2.3 are equivalent.
The concept of normalized regularly varying sequences was introduced by Matucci and Rehak in [30]: Definition 2.4. A positive sequence $y=\left\{y_{k}\right\}, k \in \mathbb{N}$ is said to be normalized regularly varying of index $\rho \in \mathbb{R}$ if it satisfies

$$
\lim _{k \rightarrow \infty} \frac{k \Delta y_{k}}{y_{k}}=\rho .
$$

If $\rho=0$, then y is called a normalized slowly varying sequence.
In what follows, $\mathcal{N R} \mathcal{V}(\rho)$ and $\mathcal{N S V}$ will be used to denote the set of all normalized regularly varying sequences of index ρ and the set of all normalized slowly varying sequences. Typical examples are:
$\{\log k\} \in \mathcal{N S V}, \quad\left\{k^{\rho} \log k\right\} \in \mathcal{N} \mathcal{R} \mathcal{V}(\rho), \quad\left\{1+(-1)^{k} / k\right\} \in \mathcal{S V} \backslash \mathcal{N S V}$.
There exist various necessary and sufficient conditions for a sequence of positive numbers to be regularly varying (see [5, 16, 30, 31]), and consequently, each one of them could be used to define a regularly varying sequence. The one that is the most important is the following Representation theorem (see [5, Theorem 3]), while some other representation formula for regularly varying sequences were established in [31, Lemma
1]. 1].

Theorem 2.5. (Representation theorem) A positive sequence $\left\{y_{k}\right\}, k \in \mathbb{N}$ is said to be regularly varying of index $\rho \in \mathbb{R}$ if and only if there exist sequences $\left\{c_{k}\right\}$ and $\left\{\delta_{k}\right\}$ such that

$$
\lim _{k \rightarrow \infty} c_{k}=c_{0} \in(0, \infty) \quad \text { and } \quad \lim _{k \rightarrow \infty} \delta_{k}=0 \text {, }
$$

and

$$
y_{k}=c_{k} k^{\rho} \exp \left(\sum_{i=1}^{k} \frac{\delta_{i}}{i}\right)
$$

In [5] very useful embedding theorem was proved, which gives the possibility of using the continuous theory in developing a theory of regularly varying sequences. However, as noticed in [5], such developmen is not generally close and sometimes far from a simple imitation of arguments for regularly varyin functions.
Theorem 2.6. (Embeding Theorem) If $y=\left\{y_{n}\right\}$ is a regularly varying sequence of index $\rho \in \mathbb{R}$, then function $Y(t)$ defined on $[0, \infty)$ by $Y(t)=y_{[\mid f}$ is a regularly varying function of index ρ. Conversely, if $Y(t)$ is a regularly varying function on $[0, \infty)$ of index ρ, then a sequence $\left(y_{k}\right\}, y_{k}=Y(k), k \in \mathbb{N}$ is regularly varying of index ρ.

Next, we state some important properties of $\mathcal{R} \mathcal{V}$ sequences, useful for the development of asymptotic Nehavior of solutions of (E) in the subsequent section (for more properties and proofs see $[5,30]$).

Theorem 2.7. (i) $y \in \mathcal{R} \mathcal{V}(\rho)$ if and only if $y_{k}=k^{\rho} l_{k}$, where $l=\left\{l_{k}\right\} \in \mathcal{S V}$.
(ii) Let $x \in \mathcal{R} \mathcal{V}\left(\rho_{1}\right)$ and $y \in \mathcal{R} \mathcal{V}\left(\rho_{2}\right)$. Then, $x y \in \mathcal{R} \mathcal{V}\left(\rho_{1}+\rho_{2}\right), x+y \in \mathcal{R} \mathcal{V}(\rho), \rho=\max \left\{\rho_{1}, \rho_{2}\right\}$ and $1 / x \in \mathcal{R} \mathcal{V}\left(-\rho_{1}\right)$.
(iii) If $y \in \mathcal{R} \mathcal{V}(\rho)$, then $\lim _{k \rightarrow \infty} \frac{y_{k+1}}{y_{k}}=1$.
(iv) If $l \in \mathcal{S V}$ and $l_{k} \sim L_{k}, k \rightarrow \infty$, then $L \in \mathcal{S V}$
(v) If $y \in \mathcal{R} \mathcal{V}(\rho)$, then $\left\{n^{-\sigma} y_{n}\right\}$ is eventually increasing for each $\sigma<\rho$ and $\left\{n^{-\mu} y_{n}\right\}$ is eventually decreasing for each $\mu>\rho$.

Theorem 1.3 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta)$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. (i) Let $\eta<\alpha$. If (1.5) holds, then equation (E) possesses a solution $x \in \mathbb{M}_{0,0}^{-}$. (ii) Let $\eta>\alpha$. If (1.7) holds, then equation (E) possesses a solution $x \in \mathbb{M}_{0,0}^{-}$.

In both cases, we can easily prove that the sequence $X=\left\{X_{n}\right\}$,
(1.9)

$$
X_{n}=\left[\frac{n^{\alpha+1} p_{n}^{-1} q_{n}}{(-\rho)^{\alpha}(\alpha-\eta-\rho \alpha)}\right]^{\frac{1}{\alpha-\beta}}, \quad n \geq 1
$$

where ρ is given by
(1.10)

$$
\rho=\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}
$$

satisfy asymptotic relation

$$
\begin{equation*}
\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} X_{j+1}^{\beta}\right)^{\frac{1}{\alpha}} \sim X_{n}, \quad n \rightarrow \infty . \tag{1.11}
\end{equation*}
$$

Also, if we look at how we defined X_{n}, we can conclude that its index of regularity is ρ and that $X_{n} \rightarrow \infty$. Thus, there exists $n_{0}>1$ such that
(1.12) $\quad X_{n+1} \leq X_{n}$ and $\frac{1}{2} X_{n} \leq \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} X_{j+1}^{\beta}\right)^{\frac{1}{\alpha}} \leq 2 X_{n}, \quad$ for $n \geq n_{0}$

Let such n_{0} be fixed. We choose constants $\kappa \in(0,1)$ and $K>1$ such that
(1.13)

$$
\kappa^{1-\frac{\beta}{\alpha}} \leq \frac{1}{2} \quad \text { and } \quad K^{1-\frac{\beta}{\alpha}} \geq 2 .
$$

Consider the space $\Upsilon_{n_{0}}$ of all real sequences $x=\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ such that x_{n} / X_{n} is bounded for $n \geq n_{0}$. Then, $\Upsilon_{n_{0}}$ is a Banach space, endowed with the norm

$$
\|x\|=\sup _{n \geq n_{0}} \frac{x_{n}}{X_{n}} .
$$

Further, $\Upsilon_{n_{0}}$ is partially ordered, with the usual pointwise ordering \leq : for $x, y \in \Upsilon_{n_{0}}, x \leq y$ means $x_{n} \leq y_{n}$ for all $n \geq n_{0}$. Define the subset $\mathcal{X} \subset \Upsilon_{n_{0}}$ by
(1.14)

$$
\mathcal{X}=\left\{x \in \Upsilon_{n_{0}}: \kappa X_{n} \leq x_{n} \leq K X_{n}, n \geq n_{0}\right\} .
$$

For any subset $B \subset \mathcal{X}$, it is obvious that $\inf B \in \mathcal{X}$ and $\sup B \in \mathcal{X}$. Next, define the operator $\mathcal{F}: \mathcal{X} \rightarrow \Upsilon_{n_{0}}$ by

$$
(1.15) \quad(\mathcal{F} x)_{n}=\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} x_{j+1}^{\beta}\right)^{\frac{1}{\alpha}}, \quad n \geq n_{0},
$$

and show that \mathcal{F} has a fixed point. Which theorem will we use? What are the properties of the Knaster-Tarski fixed point theorem? Are all of them fulfilled? OK, \mathcal{F} has fixed point x. That fixed point is a solution that we are looking for. Why? What do we need to check? Similarly, if $\eta<\alpha$ and (1.6) hold or $\eta>\alpha$ and (1.8) hold, then equation (E) has a strongly decreasing solution.
In the next part of the lecture, we discuss the asymptotic representation of strongly decreasing solutions.
A. B. Kapešić, J. V. Manoilović/Filomat 33:9 (2019), 2751-2770
(vi) Let $l \in \mathcal{S V}$. Then, $\lim _{n \rightarrow \infty} n^{\rho} l_{n}=0$ if $\rho<0$ and $\lim _{n \rightarrow \infty} n^{\rho} l_{n}=\infty$ if $\rho>0$.

In view of the statement (i) of the previous theorem, if for $y \in \mathcal{R} \mathcal{V}(\rho)$

$$
\lim _{k \rightarrow \infty} \frac{y_{k}}{k^{p}}=\lim _{k \rightarrow \infty} l_{k}=\text { const }>0,
$$

then $y=\left\{y_{n}\right\}$ is said to be a trivial regularly varying sequence of index ρ and is denoted by $y \in \operatorname{tr}-\mathcal{R V}(\rho)$. Otherwise y is said to be a nontrivial regularly varying sequence of index ρ, denoted by $y \in n t r-\mathcal{R V}(\rho)$. Next theorem can be found in [3] for normalized regularly varying sequences, but it apparently hold for all regularly varying sequences.

Theorem 2.8. If $f=\left\{f_{n}\right\} \in \mathcal{R} \mathcal{V}$ is a strictly decreasing sequence, such that $\lim _{n \rightarrow \infty} f_{n}=0$, then for each $\gamma \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} f_{n}^{-\gamma} \sum_{k=n}^{\infty} f_{k}^{\gamma-1}\left(-\Delta f_{k}\right)=\frac{1}{\gamma}
$$

If $g=\left\{g_{n}\right\} \in \mathcal{R V}$ is a strictly increasing sequence such that $\lim _{n \rightarrow \infty} g_{n}=\infty$, then

$$
\lim _{n \rightarrow \infty} g_{n}^{-\gamma} \sum_{k=1}^{n-1} g_{k}^{\gamma-1} \Delta g_{k}=\frac{1}{\gamma}
$$

The following theorem can be seen as the discrete analog of the Karamata's integration theorem and plays a central role in the proof of our main results in Section 3. The proof of this theorem can be found in [5], [21] and [36].

Theorem 2.9. Let $l=\left\{l_{n}\right\} \in \mathcal{S V}$
(i) If $\alpha>-1$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha+1} l_{n}} \sum_{k=1}^{n} k^{\alpha} l_{k}=\frac{1}{1+\alpha}$;
(ii) If $\alpha<-1$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha+1} l_{n}} \sum_{k=n}^{\infty} k^{n} l_{k}=-\frac{1}{1+\alpha}$;
(iii) If $\sum_{k=1}^{\infty} \frac{l_{k}}{k}<\infty$, then $\sum_{k=n}^{\infty} \frac{l_{k}}{k} \in \mathcal{S V}$ and $\lim _{n \rightarrow \infty} \frac{1}{l_{n}} \sum_{k=n}^{\infty} \frac{l_{k}}{k}=\infty$;
(iv) If $\sum_{k=1}^{\infty} \frac{l_{k}}{k}=\infty$, then $\sum_{k=1}^{n} \frac{l_{k}}{k} \in \mathcal{S V}$ and $\lim _{n \rightarrow \infty} \frac{1}{l_{n}} \sum_{k=1}^{n} \frac{l_{k}}{k}=\infty$.

Remark 2.10. In view of Theorem 2.7-(iii) and Theorem 2.9-(i), it is easy to see, that for $l \in \mathcal{S V}$, if $\alpha>-1$, then we have

$$
\sum_{k=1}^{n-1} k^{\alpha} l_{k} \sim \frac{(n-1)^{\alpha+1} l_{n-1}}{\alpha+1} \sim \frac{n^{\alpha+1} l_{n}}{\alpha+1} \sim \sum_{k=1}^{n} k^{\alpha} l_{k} \quad n \rightarrow \infty .
$$

3. Main results

In this section we assume that $p \in \mathcal{R} \mathcal{V}(\eta), q \in \mathcal{R V}(\sigma)$ and use expressions

$$
p_{n}=n^{\eta} \xi_{n} \quad q_{n}=n^{\sigma} \omega_{n}, \quad \xi=\left\{\xi_{n}\right\}, \omega=\left\{\omega_{n}\right\} \in \mathcal{S V},
$$

considering strongly decreasing $\mathcal{R} \mathcal{V}$-solutions expressed as
$x_{n}=n^{\rho} l_{n}, \quad l=\left\{l_{n}\right\} \in \mathcal{S V}$.

Theorem 1.4 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta)$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. (i) Let $\eta<\alpha$. Equation (E possesses regularly varying solutions x of index $\rho<0$ if and only if (1.5) holds. (ii) Le $\eta>\alpha$. Equation (E) possesses regularly varying solutions x of index $\rho<\frac{\alpha-\eta}{\alpha}$ if and only if (1.7). In both cases ρ is given by (1.10) and the asymptotic behavior of any such solution x is governed by the unique formula (1.16)
Proof. The "only if" part: If $\eta<\alpha$ and $x \in \mathcal{R} \mathcal{V}(\rho)$ with $\rho<0$ then x is strongly decreasing. Why? Summing (E) twice from n to ∞ and using discrete Karamata's theorem, we obtain that x has asymptotic behavior
(1.16)

$$
x_{n} \sim\left[\frac{n^{\alpha+1} p_{n}^{-1} q_{n}}{(-\rho)^{\alpha}(\alpha-\eta-\rho \alpha)}\right]^{\frac{1}{\alpha-\beta}}, \quad n \rightarrow \infty .
$$

Also, the index of regularity is given by (1.10) and σ satisfies (1.5). In the opposite case, for $\eta>\alpha$ and $x \in \mathcal{R} \mathcal{V}(\rho)$ with $\rho<\frac{\alpha-\eta}{\alpha}$, we see that (1.7) holds and that ρ is given by (1.10). The "if" part: According to the previous theorem, equation (E) has a solution $x \in \mathbb{M}_{0,0}^{-}$. It remains to prove that x is a regularly varying sequence of index ρ. Do you remember how we showed this in a continuous case? Here we use the Stolz-Cezaro theorem. The procedure is the same as in continuous case. We have

$$
0<\liminf _{n \rightarrow \infty} \frac{x_{n}}{X_{n}} \leq \limsup _{n \rightarrow \infty} \frac{x_{n}}{X_{n}}<\infty,
$$

where X_{n} is given by (1.9). Then,

$$
\begin{aligned}
L & =\limsup _{n \rightarrow \infty} \frac{x_{n}}{X_{n}} \leq \limsup _{n \rightarrow \infty} \frac{\Delta x_{n}}{\Delta X_{n}}=\underset{n \rightarrow \infty}{\limsup } \frac{-\left(\frac{1}{p_{k}} \sum_{k=n}^{\infty} q_{k} x_{k+1}^{\beta}\right)^{1 / \alpha}}{-\left(\frac{1}{p_{k}} \sum_{k=n}^{\infty} q_{k} X_{k+1}^{\beta}\right)^{1 / \alpha}} \\
& \leq\left(\limsup _{n \rightarrow \infty} \frac{\sum_{k=n}^{\infty} q_{k} x_{k+1}^{\beta}}{\sum_{k=n}^{\infty} q_{k} X_{k+1}^{\beta}}\right)^{1 / \alpha} \leq\left(\limsup _{n \rightarrow \infty} \frac{-q_{n} x_{n+1}^{\beta}}{-q_{n} X_{n+1}^{\beta}}\right)^{1 / \alpha} \\
& \leq\left(\underset{n \rightarrow \infty}{\limsup } \frac{x_{n+1}}{X_{n+1}}\right)^{\beta / \alpha}=L^{\frac{\beta}{\alpha}} .
\end{aligned}
$$

Since $\beta<\alpha$, we conclude that
(1.17) $0<L \leq 1$.

Similarly, we can see that $l=\liminf _{n \rightarrow \infty} x_{n} / X_{n}$ satisfies
(1.18)

$$
1 \leq l<\infty .
$$

From (1.17) and (1.18) we obtain that $l=L=1$, which means that $x_{n} \sim X_{n}, n \rightarrow \infty$ and ensures that x is a regularly varying solution of (E) with requested regularity index and the asymptotic representation given by (1.16). \square We consider border cases separately.
Theorem 1.5 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), \eta<\alpha$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. There exists $x \in \mathbb{M}_{0,0}^{-} \cap$ $n t r-\mathcal{S V}$ if and only if (1.6) holds. All such solutions of (E) enjoy the precise asymptotic formula
(1.19)

$$
x_{n} \sim\left[\frac{\alpha-\beta}{\alpha} \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{\alpha}}\right]^{\frac{\alpha}{\alpha-\beta}}, \quad n \rightarrow \infty .
$$

Moreover, we assume that $\eta \neq \alpha$ and distinguish two mutually exclusive cases:
(i) $\eta<\alpha$ implying that $S=\infty$; and (ii) $\eta>\alpha$ implying that $S<\infty$.

CASE (i): It is clear that for any strongly decreasing solution of (E) it holds that $x_{n} \leq c$, for large n. Thus, we have that the index of regularity ρ of strongly decreasing $\mathcal{R} \mathcal{V}$-solution x must satisfy $\rho \leq 0$. If $\rho=0$ then $l_{n}=x_{n} \rightarrow 0$, so x is a member of $n t r-\mathcal{S V}$
CASE (ii): Using (3.1) and Theorem 2.9 we have

$$
\pi_{n}=\sum_{k=n}^{\infty} \frac{1}{p_{k}^{1 / \alpha}}=\sum_{k=n}^{\infty} k^{-\frac{n}{\alpha}} \zeta_{k}^{-\frac{1}{n}} \sim \frac{\alpha}{\eta-\alpha} n^{\frac{a-n}{a}} \xi_{n}^{-\frac{1}{\alpha}}=\frac{\alpha}{\eta-\alpha} \cdot \frac{n}{p_{n}^{1 / \alpha}}, \quad n \rightarrow \infty,
$$

so that $\left\{\pi_{n}\right\} \in \mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{a}\right)$. For any strongly decreasing solution x of (E), by application of Lemma 1.3 , we have

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{\pi_{n}}=\lim _{n \rightarrow \infty} \frac{\Delta x_{n}}{-\frac{1}{p_{n}{ }^{\top}}}=\lim _{n \rightarrow \infty}\left(x_{n}{ }^{[1]}\right)^{\frac{1}{n}}=0,
$$

implying that the index of regularity ρ of strongly decreasing solutions must satisfy $\rho \leq \frac{\alpha-\eta}{\alpha}$.
If $\eta<\alpha$, the totality of strongly decreasing $\mathcal{R} \mathcal{V}$-solutions will be divided into the following two classes

$$
n t r-\mathcal{S V} \text { or } \mathcal{R} \mathcal{V}(\rho) \text { with } \rho<0,
$$

while, if $\eta>\alpha$, the totality of strongly decreasing $\mathcal{R} \mathcal{V}$-solutions of (E) will be divided into the followin two subclasses

$$
\mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{\alpha}\right) \text { or } \mathcal{R} \mathcal{V}(\rho) \text { with } \rho<\frac{\alpha-\eta}{\alpha} .
$$

Our purpose is to show that all solutions in each of this four subclasses of strongly decreasing $\mathcal{R} \mathcal{V}$-solutions of (E) enjoy one and the same asymptotic behavior as $n \rightarrow \infty$, whereby the regularity index of such a solution is uniquely determined by α, β and the regularity indices η, σ of coefficients p, q. Moreover, necessary and sufficient conditions for the existence of solutions belonging to these four subclasses of strongly decreasin $R \mathcal{V}$-solutions will be established.

3.1. Existence of strongly decreasing solutions

Conditions for the existence of a strongly decreasing solution of differential equation (1.1) is given by the following theorem:

Theorem 3.1. (i) Let $\int_{a}^{\infty} p(t)^{-\frac{1}{d}} d t=\infty, a \geq 0$. If

$$
\int_{a}^{\infty}\left(\frac{1}{p(t)} \int_{t}^{\infty} q(s) d s\right)^{\frac{1}{n}} d t<\infty,
$$

then equation (1.1) has a strongly decreasing solution.
(ii) Let $\int^{\infty} p(t)^{-\frac{1}{a}} d t<\infty, a \geq 0$. If

$$
\int_{a}^{\infty} q(t)\left(\int_{t}^{\infty} \frac{d s}{p(s)^{\frac{1}{\alpha}}}\right)^{\beta} d t<\infty,
$$

then equation (1.1) has a strongly decreasing solution.

Proof. The "only if" part: We can calculate the index of regularity of solution x Could anyone tell me what ρ is? Similarly, as in the previous theorem, we obtain that x i given with
(1.20)

$$
x_{n} \sim \frac{1}{(\alpha-\eta)^{\frac{1}{\alpha}}} \sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{\alpha}} \omega_{k}^{\frac{1}{\alpha}} l_{k}^{\frac{\beta}{\alpha}}, \quad n \rightarrow \infty .
$$

By properties of RVsequences and discrete Karamata's theorem, we prove that x has the asymptotic formula (1.19) and that (1.6) holds. The "if" part: In the same way as in the previous theorem, we get that equation (E) has a strongly decreasing RVsolution. \square Another border case is given by the next theorem

Theorem 1.6 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), \eta>\alpha$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. There exists $x \in \mathbb{M}_{0,0}^{-} \cap$ $\mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{\alpha}\right)$ if and only if (1.8) holds. All such solutions of (E) enjoy the precise asymptotic behaviour
(1.21)

$$
x_{n} \sim\left(\alpha^{\alpha-1} \frac{\alpha-\beta}{(\eta-\alpha)^{\alpha}}\right)^{\frac{1}{\alpha-\beta}} n p_{n}^{-\frac{1}{\alpha}}\left[\sum_{k=n}^{\infty} k^{\beta} q_{k} p_{k}^{-\frac{\beta}{\alpha}}\right]^{\frac{1}{\alpha-\beta}}, \quad n \rightarrow \infty .
$$

I do not want to prove this theorem now since its proof is quite similar to the proof of the previous theorem. For more information, you can read the literature given in the hangout. Now, when we have proved all the results, what can we conclude? I'd like to emphasize that the existence of strongly decreasing $\mathcal{R \mathcal { V }}$-solutions for the equation (E) with $\mathcal{R} \mathcal{V}$ coefficient is fully characterized by the assumption $I<\infty$ if $S=\infty$ and by the assumption $J<\infty$ if $S<\infty$. In fact, this conclusion can be formulated in the following way.

Corollary 1.1 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), \eta \neq \alpha$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$.
(i) Let $S=\infty$. Equation (E) has strongly decreasing $\mathcal{R} \mathcal{V}$-solutions if and only if $I<\infty$.
(ii) Let $S<\infty$. Equation (E) has strongly decreasing $\mathcal{R} \mathcal{V}$-solutions if and only if $J<\infty$.

Moreover, if $S=\infty$, then $J=\infty$ so by Theorem $1.1 \mathbb{M}_{0, l}^{-}=\emptyset$. Otherwise, if $S<\infty$, denoting the series $Q=\sum_{k=1}^{\infty} q_{k}$, we have two cases:
(a) If $Q=\infty$, then $I=\infty$, so by Theorem 1.1 we have $\mathbb{M}^{-}=\mathbb{M}_{0}^{-}$i.e. $\mathbb{M}_{B}^{-}=\emptyset$.
(b) If $Q<\infty$, then $I<\infty$, so by Theorem 1.1 we have $\mathbb{M}^{-}=\mathbb{M}_{0}^{-} \cup \mathbb{M}_{B}^{-}$.

Using conclusions from the previous corollary and Theorem 1.1, we get the next two corollaries where we will use the following symbols: $* \mathcal{R}$ denote the set of all regularly varying solutions, $* \mathcal{R}^{-}$denote the set of all decreasing regularly varying solutions, $* \mathcal{R}_{0}^{-}=\mathcal{R} \cap \mathbb{M}_{0}^{-}$. * $\mathcal{R}_{0,0}^{-}=\mathcal{R} \cap \mathbb{M}_{0,0}^{-}$

Corollary 1.2 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), q \in \mathcal{R} \mathcal{V}(\sigma)$ and $S=\infty$. Then,

$$
\mathcal{R}^{-}=n t r-\mathcal{S} \mathcal{V} \cup \mathcal{R} \mathcal{V}\left(\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}\right) \cup \mathbb{M}_{B}^{-}
$$

if and only if $I<\infty$.

The proof of the previous theorem can be found in [13, 34] for (i) and in [37] for (ii). It is expected that for the discrete version of Theorem 3.1, the existence of strongly decreasing solution is characterized by the assumption $I<\infty$ if $S=\infty$ and by the assumption $J<\infty$ if $S<\infty$. In fact, we prove
Theorem 3.2. Suppose that $p \in \mathcal{R V}(\eta)$ and $q \in \mathcal{R V}(\sigma)$.
(i) Let $\eta<\alpha$. If $I<\infty$, then $\mathbb{M}_{0,0}^{-} \neq \emptyset$.
(ii) Let $\eta>\alpha$. If $J<\infty$, then $\mathbb{M}_{0,0}^{-} \neq \emptyset$.

First of all, let's notice that if $\eta<\alpha$, then $\sigma<-1$ is a necessary condition for $I<\infty$. Then, using discrete Karamata theorem, (3.1) and (3.3), we have

$$
\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{x}} \sim \frac{1}{(-(\sigma+1))^{\frac{1}{a}}}\left(\frac{k^{\sigma+1-\eta} \omega_{k}}{\xi_{k}}\right)^{\frac{1}{\alpha}}, \quad k \rightarrow \infty .
$$

On the other hand, if $\eta>\alpha$ application of discrete Karamata theorem gives

$$
q_{k}\left(\sum_{j=k}^{\infty} \frac{1}{p_{j}^{1 / \alpha}}\right)^{\beta} \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\beta} k^{\sigma+\beta-\frac{\beta}{\alpha} \eta} \frac{\omega_{k}}{\xi_{k}^{\beta / \alpha}}, k \rightarrow \infty .
$$

Consequently,

(i) for $\eta<\alpha, I<\infty$ if and only if

$$
\sigma<\eta-\alpha-1
$$

or

$$
\sigma=\eta-\alpha-1 \quad \text { and } \quad \sum_{k=1}^{\infty} k^{-1}\left(\frac{\omega_{k}}{\xi_{k}}\right)^{\frac{1}{a}}<\infty ;
$$

(ii) for $\eta>\alpha, J<\infty$ if and only if

$$
\sigma<\frac{\beta \eta}{\alpha}-\beta-1
$$

or

$$
\sigma=\frac{\beta \eta}{\alpha}-\beta-1 \quad \text { and } \quad \sum_{k=1}^{\infty} k^{-1} \frac{\omega_{k}}{\xi_{k}^{\beta / a}}<\infty .
$$

Taking into account the previous consideration, Theorem 3.2 will be proved by considering the above four cases.
Theorem 3.3. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta)$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$.
(i) Let $\eta<\alpha$. If (3.4) holds, then equation (E) possesses a solution $x \in \mathbb{M}^{-}$
(i) Let $\eta<\alpha$. If (3.4) holas, then equation (E) possesses a solution $x \in \mathbb{M}_{0,0}$.
(ii) Let $\eta>\alpha$. If (3.6) holds, then equation (E) possesses a solution $x \in \mathbb{M}_{0,0}^{-}$

Proof. Suppose either $\eta<\alpha$ and (3.4) holds or $\eta>\alpha$ and (3.6) holds. Denote

$$
X_{n}=\left[\frac{n^{\alpha+1} p_{n}^{-1} q_{n}}{(-\rho)^{\alpha}(\alpha-\eta-\rho \alpha)}\right]^{\frac{1}{\alpha-\beta}}, \quad n \geq 1,
$$

and $\lambda=(-\rho)^{\alpha}(\alpha-\eta-\rho \alpha)$, where ρ is given by
$\rho=\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}$

Corollary 1.3 Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), q \in \mathcal{R} \mathcal{V}(\sigma)$ and $S<\infty$. Then
(i) If $\sigma<-1$ or $\sigma=-1$ and $Q<\infty$, then

$$
\mathcal{R}^{-}=\mathcal{R} \mathcal{V}\left(\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}\right) \cup \mathbb{M}_{0, l}^{-} \cup \mathbb{M}_{B}^{-} .
$$

(ii) If $\sigma=-1$ and $Q=\infty$ or $-1<\sigma<\frac{\beta \eta}{\alpha}-\beta-1$, then

$$
\mathcal{R}^{-}=\mathcal{R}_{0}^{-}=\mathcal{R} \mathcal{V}\left(\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}\right) \cup \mathbb{M}_{0, l}^{-} .
$$

(iii) If $\sigma=\frac{\beta \eta}{\alpha}-\beta-1$ and $J<\infty$, then

$$
\mathcal{R}^{-}=\mathcal{R}_{0}^{-}=\mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{\alpha}\right) \cup \mathbb{M}_{0, l}^{-}
$$

(iv) If $\sigma=\frac{\beta \eta}{\alpha}-\beta-1$ and $J=\infty$ or $\sigma>\frac{\beta \eta}{\alpha}-\beta-1$, then

$$
\mathcal{R}^{-}=\emptyset .
$$

I want to emphasize one thing that is very interesting. At the beginning of today's lecture I said that class \mathbb{M}^{-}is not empty. But, if you look at the previous corollary, you can se that class $\mathcal{R}^{-}=\emptyset$. Can anyone explain this?
I'd like to illustrate with examples what we learned today
Example 1.1 Consider the difference equation
(1.22)

$$
\Delta\left(\frac{n^{\eta}}{\log n}\left(\Delta x_{n}\right)^{3}\right)=\frac{n^{\eta-7} \varphi_{n}}{\log ^{5} n} \sqrt{x_{n+1}^{3}}, \quad n \geq 1,
$$

where φ_{n} is a positive real-value sequence such that $\lim _{n \rightarrow \infty} \varphi_{n}=\delta$ and $\eta \neq 3$. In this equation, $\alpha=3, \beta=\frac{3}{2},\left\{p_{n}\right\} \in \mathcal{R} \mathcal{V}(\eta)$ and $\left\{q_{n}\right\} \in \mathcal{R} \mathcal{V}(\sigma)$, where $\sigma=\eta-7$. (i) Suppose that $\eta<3$. In this case

$$
\sigma=\eta-7<\eta-4=\eta-\alpha-1,
$$

so in view of Theorem 1.4-(i) and Theorem 1.1 this equation has a strongly decreasing $\mathcal{R} \mathcal{V}$ solution of index $\rho<0$ as well as a solution in $\mathbb{M}_{B}^{-}=\operatorname{tr}-\mathcal{S V}$. More precisely, by Theorem 1.4-(i) equation (1.22) has a strongly decreasing solution which belongs to $\mathcal{R} \mathcal{V}(-2)$. That solution has asymptotic behavior

$$
\begin{equation*}
x_{n} \sim\left(\frac{\delta}{8(9-\eta)}\right)^{\frac{2}{3}} n^{-2}(\log n)^{-\frac{8}{3}}, \quad n \rightarrow \infty . \tag{1.23}
\end{equation*}
$$

If
(1.24)

$$
\varphi_{n}=\frac{n^{7}(n+1)^{3}}{(\log n)^{4}(\log (n+1))^{5}}\left((\log n)^{9} \psi_{n}-(\log (n+1))^{9}\left(\frac{n+1}{n}\right)^{\eta} \psi_{n+1}\right),
$$

A. B. Kapešić, J. V. Manoilović/Filomat 33:9 (2019), 2751-2770

Clearly, $X=\left\{X_{n}\right\} \in \mathcal{R V}(\rho)$ and it may be expressed in the form

$$
X_{n}=\lambda^{-\frac{1}{n-7}} n^{\rho}\left(\frac{\omega_{n}}{\xi_{n}}\right)^{\frac{1}{a-p}} .
$$

Notice that (3.4) and (3.9) imply that $\rho<0$, while (3.6) and (3.9) imply that $\rho<\frac{\alpha-\eta}{\alpha}$, so that by Theorem 2.7 -(v),(vi), $X_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left\{X_{n}\right\}$ is eventually decreasing, in both cases (i) and $(i i)$. Let us first prove that the sequence X satisfies the asymptotic relation

$$
\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} X_{j+1}^{\beta}\right)^{\frac{1}{n}} \sim X_{n}, \quad n \rightarrow \infty .
$$

Using (3.1), by application of Theorem 2.9-(ii) and Theorem 2.7-(iii), we get

$$
\begin{aligned}
& \sum_{k=n}^{\infty} q_{k} X_{k+1}^{\beta} \sim \lambda^{-\frac{\beta}{\alpha-\beta}} \sum_{k=n}^{\infty} k^{\sigma+\rho \beta} \xi_{k}^{-\frac{\beta}{\alpha-\beta}} \omega_{k}^{\frac{\alpha}{a-\beta}}=\lambda^{-\frac{\beta}{\alpha-\beta}} \sum_{k=n}^{\infty} k^{\alpha(\rho-1)+\eta-1} \xi_{k}^{-\frac{\beta}{\alpha-\beta}} \omega_{k}^{\frac{\alpha}{\alpha-\beta}} \\
& \sim \lambda^{-\frac{\beta}{\alpha-\beta}} n^{\alpha(\rho-1)+\eta} \xi_{n}^{-\frac{\beta}{\alpha-\beta}} \omega_{n}^{\frac{a}{\alpha-\beta}} \\
&-(\alpha(\rho-1)+\eta)
\end{aligned} \quad n \rightarrow \infty .
$$

Notice that $\alpha(\rho-1)+\eta<0$ in both cases (i) and (ii). From (3.12), applying Theorem 2.9-(ii), we obtain the desired asymptotic relation for X :

$$
\begin{aligned}
& \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} X_{j+1}^{\beta}\right)^{\frac{1}{n}} \sim \lambda^{-\frac{\beta}{a(\alpha-\beta)}}(\alpha(1-\rho)-\eta)^{-\frac{1}{n}} \sum_{k=n}^{\infty} k^{\rho-1} \xi_{k}^{-\frac{1}{n-\beta}} \omega_{k}^{\frac{1}{\alpha-\beta}} \\
& \sim \lambda^{-\frac{\beta}{\alpha(\alpha-\beta)}}(\alpha(1-\rho)-\eta)^{-\frac{1}{a}} \frac{n^{\rho} \zeta_{n}^{-\frac{1}{n-\beta}} \omega_{n}^{\frac{1}{n-\beta}}}{-\rho} \\
& =\lambda^{-\frac{\beta}{\alpha(a-\beta)}} \cdot \lambda^{-\frac{1}{\alpha}} n^{\rho} \zeta_{n}^{-\frac{1}{\alpha+\beta}} \omega_{n}^{\frac{1}{\alpha-\beta}}=X_{n}, \quad n \rightarrow \infty
\end{aligned}
$$

Thus, there exists $n_{0}>1$ such that

$$
X_{n+1} \leq X_{n} \text { and } \frac{1}{2} X_{n} \leq \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} X_{j+1}^{\beta}\right)^{\frac{1}{4}} \leq 2 X_{n}, \quad \text { for } n \geq n_{0}
$$

Let such n_{0} be fixed. We choose constants $\kappa \in(0,1)$ and $K>1$ such that

$$
\kappa^{1-\frac{\beta}{\alpha}} \leq \frac{1}{2} \quad \text { and } \quad K^{1-\frac{\beta}{n}} \geq 2
$$

Consider the space $\Upsilon_{n_{0}}$ of all real sequences $x=\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ such that x_{n} / X_{n} is bounded for $n \geq n_{0}$. Then, $\Upsilon_{n_{0}}$ is a Banach space, endowed with the norm

$$
\|x\|=\sup _{n \geq n_{0}} \frac{x_{n}}{X_{n}} .
$$

Further, $\Upsilon_{n_{n}}$ is partially ordered, with the usual pointwise ordering \leq : for $x, y \in \Upsilon_{n_{0}}, x \leq y$ means $x_{n} \leq y_{n}$ for all $n \geq n_{0}$. Define the subset $\mathcal{X} \subset \Upsilon_{n_{0}}$ by

$$
X=\left\{x \in \Upsilon_{n_{0}}: \kappa X_{n} \leq x_{n} \leq K X_{n}, n \geq n_{0}\right\} .
$$

For any subset $B \subset \mathcal{X}$, it is obvious that $\inf B \in \mathcal{X}$ and $\sup B \in \mathcal{X}$. Next, define the operator $\mathcal{F}: \mathcal{X} \rightarrow \Upsilon_{n_{0}}$ by

$$
(\mathcal{F} x)_{n}=\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} x_{j+1}^{\beta}\right)^{\frac{1}{\alpha}}, \quad n \geq n_{0},
$$

where

$$
\psi_{n}=\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\left(\frac{\log n}{\log (n+1)}\right)^{\frac{8}{3}}\right)^{3},
$$

then $\delta=8(9-\eta)$ and the considered equation has an exact solution $n^{-2}(\log n)^{-\frac{8}{3}}$. (ii) For $\eta \in(3,9)$ we have that $\eta>\alpha$ and $\sigma=\eta-7<\frac{\eta-5}{2}=\frac{\beta \eta}{\alpha}-\beta-1$, so in view of Theorem 1.4 -(ii) the equation (1.22) has a strongly decreasing solution which belongs to $\mathcal{R} \mathcal{V}(-2)$ and satisfies (1.23). This equation also possess a solution which belongs to a class $\mathbb{M}_{0, l}^{-}$. (iii) Let $\eta=9$. Then, $\sigma=2=\frac{\beta \eta}{-\beta-1}$ and $J<\infty$. By Theorem 1.6 the equation (1.22) has a solution $x \in \mathcal{R} \mathcal{V}\left(1-\frac{\eta}{\alpha}\right)^{\alpha}=\mathcal{R} \mathcal{V}(-2)$ and any such solution x has the asymptotic representation

$$
\begin{aligned}
x_{n} & \sim\left(\frac{\delta}{16}\right)^{\frac{2}{3}} n^{-2}(\log n)^{\frac{1}{3}}\left(\sum_{k=n}^{\infty} k^{-1}(\log k)^{-\frac{9}{2}}\right)^{\frac{2}{3}} \\
& \sim\left(\frac{\delta}{16}\right)^{\frac{2}{3}} n^{-2}(\log n)^{\frac{1}{3}}\left(\frac{2}{7}\right)^{\frac{2}{3}}(\log n)^{-\frac{7}{3}}=\left(\frac{\delta}{56}\right)^{\frac{2}{3}}(n \log n)^{-2}, \quad n \rightarrow \infty,
\end{aligned}
$$

where we used that

$$
\sum_{k=n}^{\infty} k^{-1}(\log k)^{-\frac{9}{2}} \sim \int_{n}^{\infty} x^{-1}(\log x)^{-\frac{9}{2}} d x, \quad n \rightarrow \infty .
$$

If

$$
\varphi_{n}=\frac{(n+1)^{3}(\log (n+1))^{3}(\log n)^{5}}{n^{2}}\left(\chi_{n}-\chi_{n+1}\right),
$$

where

$$
\chi_{n}=\frac{n^{3}}{(\log n)^{7}}\left(1-\left(\frac{n \log n}{(n+1) \log (n+1)}\right)^{2}\right)^{3}
$$

then $\lim _{n \rightarrow \infty} \varphi_{n}=56$ and $x_{n}=(n \log n)^{-2}$ is an exact solution of the equation (1.22). (iv) If $\eta>9$, then $\sigma=\eta-7>\frac{\eta-5}{2}=\frac{\beta \eta}{a}-\beta-1$ so $J=\infty$. Therefore, by Corollary 1.1 the equation (1.22) does not have decreasing regularly varying solutions.

Example 1.2 Consider the difference equation
(1.25)

$$
\Delta\left(-n^{\eta} \sqrt{\log n}\left(\Delta x_{n}\right)^{2}\right)=\frac{n^{\eta-3} \varphi_{n}}{(\log n)^{19 / 6}} \sqrt[3]{x_{n+1}}, \quad n \geq 1
$$

where φ_{n} is a positive real-value sequence such that $\lim _{n \rightarrow \infty} \varphi_{n}=\delta$ and $\eta \neq 2$. Here $p_{n}=n^{\eta} \sqrt{\log n}$, and $q_{n}=n^{\eta-3} \varphi_{n}(\log n)^{-19 / 6}$, so $p \in \mathcal{R} \mathcal{V}(\eta)$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$, where $\sigma=$ $\eta-3=\eta-\alpha-1$. Let $\eta<2=\alpha$. Using that

$$
\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{\alpha}} \sim \sum_{k=n}^{\infty} \sqrt{\frac{\varphi_{n}}{2-\eta}} \frac{1}{k(\log k)^{11 / 6}}<\infty, \quad n \rightarrow \infty,
$$

A. B. Kapešić, I. V. Manoilović/ Filomat 33:9 (2019), 2751-2770
and show that \mathcal{F} has a fixed point by using Lemma 1.4. Namely, the operator \mathcal{F} has the following properties: (i) Operator \mathcal{F} maps \mathcal{X} into itself: Let $x \in \mathcal{X}$. Using (3.13), (3.14), (3.15) and (3.16), we get

$$
(\mathcal{F} x)_{n} \leq K^{\frac{\beta}{a}} \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} X_{j+1}^{\beta}\right)^{\frac{1}{a}} \leq 2 K^{\frac{\beta}{n}} X_{n} \leq K X_{n}, \quad n \geq n_{0} .
$$

and

$$
(\mathcal{F} x)_{n} \geq \kappa^{\frac{\beta}{n}} \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} X_{j+1}^{\beta}\right)^{\frac{1}{4}} \geq \kappa^{\frac{1}{n}} \frac{X_{n}}{2} \geq \kappa X_{n}, \quad n \geq n_{0} .
$$

This shows that $(\mathcal{F} x)_{n} \in X$, for all $n \geq n_{0}$, that is, $\mathcal{F}(X) \subset X$
(ii) Operator \mathcal{F} is increasing, i.e. for any $x, y \in \mathcal{X}, x \leq y$ implies $\mathcal{F} x \leq \mathcal{F} y$

Thus all the hypotheses of Lemma 1.4 are fulfilled implying the existence of a fixed point $x \in X$ of \mathcal{F}, satisfying

$$
x_{n}=\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} j_{j+1}^{\beta_{1}^{\beta}}\right)^{\frac{1}{n}}, \quad n \geq n_{0} .
$$

It is clear in view of (3.15) and the fact that $X_{n} \rightarrow 0, n \rightarrow \infty$, that x is a positive solution of (E) which satisfie $x_{n} \rightarrow 0, n \rightarrow \infty$. Moreover, due to (3.10), (3.13) and (3.15), we have

$$
p_{n}\left(-\Delta x_{n}\right)^{\alpha} \leq K^{\beta} \sum_{k=n}^{\infty} q_{k} X_{k+1}^{\beta} \leq m \sum_{k=n}^{\infty} k^{\sigma+\rho \beta} f_{k,}
$$

where

$$
f_{k}=\left(\frac{\omega_{k}}{\xi_{k}^{\beta}}\right)^{\frac{1}{\alpha-\beta}}, \quad f=\left\{f_{k}\right\} \in \mathcal{S V} \text { and } m=K^{\beta} \lambda^{-\frac{\beta}{\alpha-\beta}} .
$$

Since, $\eta<\alpha$ and (3.4) as well as $\eta>\alpha$ and (3.6) imply that $\sigma+\rho \beta<-1$, from (3.18) we conclude that $x_{n}^{[1]} \rightarrow 0$, $n \rightarrow \infty$, that is $x \in \mathbb{M}_{0,0}^{-}$. \quad.
Theorem 3.4. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), \eta<\alpha$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. If (3.5) holds, then there exists $x \in \mathbb{M}_{0,0}^{-}$
Proof. Suppose (3.5) holds. Define sequences $T=\left\{T_{n}\right\}$ and $G=\left\{G_{n}\right\}$ by

$$
\begin{equation*}
G_{n}=\sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{\alpha}} \omega_{k}^{\frac{1}{k}}, \quad T_{n}=\left(\frac{\alpha-\beta}{\alpha} \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{\alpha}}\right)^{\frac{n}{n-\beta}}, \quad n \geq 1 . \tag{3.19}
\end{equation*}
$$

Since the first condition from (3.5) implies $\sigma<-1$, application of Theorem 2.9 gives

$$
\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{n}} \sim \frac{1}{(\alpha-\eta)^{\frac{1}{\alpha}}} \sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{a}} \omega_{k}^{\frac{1}{a}}, \quad n \rightarrow \infty,
$$

so that

$$
T_{n} \sim \frac{1}{(\alpha-\eta)^{\frac{1}{\alpha-\beta}}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{\pi}{1-\beta}} G_{n}^{\frac{\alpha}{\alpha-\beta}}, \quad n \rightarrow \infty
$$

by Theorem 1.6 the equation (1.25) has a nontrivial slowly varying solution and any such solution x has the asymptotic representation

$$
x_{n} \sim\left(\frac{\delta}{2-\eta}\right)^{\frac{3}{5}} \cdot(\log n)^{-1}, \quad n \rightarrow \infty .
$$

If

$$
\varphi_{n}=n^{3}\left(\frac{\log n}{\log (n+1)}\right)^{\frac{19}{6}}\left[\frac{\left(\log \frac{n+1}{n}\right)^{2}}{(\log n)^{\frac{3}{2}}(\log (n+1))^{\frac{1}{2}}}-\left(\frac{n+1}{n}\right)^{\eta}\left(\frac{\log \frac{n+2}{n+1}}{\log (n+2)}\right)^{2}\right]
$$

then $\delta=2-\eta$ and considered equation has an exact solution $x_{n}=(\log n)^{-1}, x \in n t r-\mathcal{S V}$. Notice that in the case $\eta>2=\alpha$, since $\sigma>\frac{\beta \eta}{a}-\beta-1$, using Corollary 1.3, we conclud that $\mathcal{R}^{-}=\emptyset$.

OK, that would be all for today. Please feel free to ask questions and make comments.

References

[1] R.P. Agarwal, M. Bohner, S.R. Grace, D. O'Regan, Discrete oscillation theory, Hindawi Publishing Corporation, New York, 2005
[2] R.P. Agarwal, W.-T. Li, P.Y.H. Pang, Asymptotic behavior of nonlinear difference systems,Appl. Math. Comput. 140 (2003) 307-316.
[3] R.P. Agarwal, J.V. Manojlović, On the existence and the asymptotic behavior of nonoscillatory solutions of second order quasilinear difference equations, Funkcialaj Ekvacioj, 56 (2013) 81-109.
[4] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia of Math ematics and its Applications 27, Cambridge University Press, 1987.
[5] R. Bojanić, E. Seneta, A unified theory of regularly varying sequences,Mathematische Zeitschript, 134 (1973), 91-106.
[6] M. Cecchi, Z. Došlá, M. Marini, Positive decreasing solutions of quasi-linear difference equations,Computers and Mathematics with Applications, Vol. 42 (2001), 1401-1410

7] M. Cecchi, Z. Došlá, M. Marini, Unbounded solutions of quasi-linear difference equa tions, Computers and Mathematics with Applications, Vol. 45 (2003), 1113-1123.
[8] M. Cecchi, Z. Došlá, M. Marini, Limit behavior for quasilinear difference equations Proceedings of Sixth International Conference on Difference Equations, Augsburg, Germany, 2001., B. Aulbach, S. Elyadi, G. Ladas, CRC Press, London, 2004, 383-390.
[9] M. Cecchi, Z. Dos̆lá, M. Marini, On the growth of nonoscillatory solutions for difference equations with deviating argument, Adv. Difference Equ., Article ID-505324, 2008.
[10] M. Cecchi, Z. Došlá, M. Marini, On oscillation and nonoscillation properties of EmdenFolwer difference equations,Cent. Eur. J. Math., Vol. 7 (2009), No.2, 322-334.

Clearly, $G \in \mathcal{S V}$ and $T \in \mathcal{S V}$. Applying Theorem 2.9-(ii) and using the first condition from (3.5) we get

$$
\sum_{k=n}^{\infty} q_{k} T_{k+1}^{\beta} \sim \frac{1}{(\alpha-\eta)^{\frac{\alpha}{a-\beta}}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{a \rho}{\frac{a p}{\alpha-\beta}}} n^{\eta-\alpha} \omega_{n} G_{n}^{\frac{a \xi}{\sqrt{\beta+7}}}, n \rightarrow \infty .
$$

Thus, by Theorem 2.8 , the previous relation gives

$$
\begin{aligned}
\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} T_{j+1}^{\beta}\right)^{\frac{1}{\alpha}} & \sim \frac{1}{(\alpha-\eta)^{\frac{1}{\alpha-\beta}}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{\beta}{\alpha-\beta}} \sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{\alpha}} \omega_{k}^{\frac{1}{a}} G_{k}^{\frac{\beta}{1-\beta}} \\
& \sim \frac{1}{(\alpha-\eta)^{\frac{1}{\alpha-\beta}}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{\beta}{\alpha-\beta}} \sum_{k=n}^{\infty}\left(-\Delta G_{k}\right) \cdot G_{k}^{\frac{\beta}{k-\beta}} \\
& \sim \frac{1}{(\alpha-\eta)^{\frac{1}{\alpha-\beta}}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{\alpha}{\alpha-\beta}-\beta} G_{n}^{\frac{\pi}{n-\beta}} \sim T_{n}, \quad n \rightarrow \infty .
\end{aligned}
$$

Consequently, we conclude that T satisfies the asymptotic relation (3.11).
The rest of the proof is the same as the proof of Theorem 3.3 where X_{n} is replaced with T_{n}. Then, a solution x of the equation (E) satisfying $\kappa T_{n} \leq x_{n} \leq K T_{n}$, for large n, is obtained by the application of Knaster-Tarski fixed point theorem and belongs to the class $\mathbb{M}_{0,0}^{-}$.
Theorem 3.5. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), \eta>\alpha$ and $q \in \mathcal{R V}(\sigma)$. If (3.7) holds, then there exists $x \in \mathbb{M}_{0,0}^{-}$ Proof. Suppose (3.7) holds. Using (3.1) and the assumption (3.7), we have that

$$
\sum_{k=1}^{\infty} q_{k}\left(\sum_{j=k}^{\infty} \frac{1}{p_{k}^{1 / \alpha}}\right)^{\beta} \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\beta} \sum_{k=1}^{\infty} k^{\beta} q_{k} p_{k}^{-\frac{\beta}{\alpha}}=\left(\frac{\alpha}{\eta-\alpha}\right)^{\beta} \sum_{k=1}^{\infty} k^{-1} \omega_{k} \xi_{k}^{-\frac{\beta}{\alpha}}, n \rightarrow \infty .
$$

Define sequences $Y=\left\{Y_{n}\right\}$ and $W=\left\{W_{n}\right\}$ by

$$
W_{n}=\sum_{k=n}^{\infty} k^{-1} \omega_{k} \xi_{k}^{-\frac{\beta}{2}}, \quad Y_{n}=\left(\frac{\alpha}{\eta-\alpha}\right)^{\frac{\alpha}{\alpha-\beta}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{1}{\alpha-\beta}} n p_{n}^{-\frac{1}{a}} W_{n}^{\frac{1}{n-\beta}}, n \geq 1 .
$$

Note that $W \in \mathcal{S V}$ and since $n p_{n}^{-\frac{1}{a}}=n^{\frac{\alpha-\eta}{a}} \xi_{n}^{-\frac{1}{n}}$, we see that $Y \in \mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{a}\right)$. Thus, application of Theorem 2.818 . ${ }^{\text {gives }}$ Note
gives

$$
\begin{aligned}
& \sum_{k=n}^{\infty} q_{k} Y_{k+1}^{\beta} \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\frac{\alpha \beta}{\alpha-\beta}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{\beta}{\alpha-\beta}} \sum_{k=n}^{\infty} k^{-1} \omega_{k} \xi_{k}^{-\frac{\beta}{\alpha}} W_{k}^{\frac{\beta}{\alpha-\beta}} \\
& \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\frac{\alpha \beta}{\alpha \beta}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{\beta}{\alpha-\beta}} \sum_{k=n}^{\infty}\left(-\Delta W_{k}\right) \cdot W_{k}^{\frac{\beta}{\alpha-\beta}} \\
& \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\frac{\alpha \beta}{\alpha-\beta}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{\alpha}{\alpha-\beta}} W_{n}^{\frac{\alpha}{\alpha-\beta}}, \quad n \rightarrow \infty, \\
& \text { which yields with the help of Theorem 2.9-(ii) }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j} \gamma_{j+1}^{\beta}\right)^{\frac{1}{\alpha}} \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\frac{\beta}{\alpha-\beta}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{1}{\alpha-\beta}} \sum_{k=n}^{\infty} k^{-\frac{\eta}{a}} \xi_{k}^{-\frac{1}{\alpha}} W_{k}^{\frac{1}{\alpha-\beta}} \\
& \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\frac{\alpha}{\alpha-\beta}}\left(\frac{\alpha-\beta}{\alpha}\right)^{\frac{1}{\alpha-\beta}} n^{\frac{\alpha-n}{a}} \xi_{n}^{-\frac{1}{\alpha}} W_{n}^{\frac{1}{\alpha-\beta}}=Y_{n}, \quad n \rightarrow \infty .
\end{aligned}
$$

[11] M. Cecchi, Z. Došlá, M. Marini, Intermediate solutions for nonlinear difference equations with p-Laplacian, Advanced Studies in Pure Mathematics, 53 (2009), 45-52.
[12] M. Cecchi, Z. Došl̆́, M. Marini, I. Vrkoč, Nonoscillatory solutions for Emden-Fowle type difference equations, Proc. Int. Conf. Difference Equations, Special Function and Ortogonal Polynomials, Munich 2005, Eds. S. Elaydi, J. Cushing, R. Lasser, V. Pa pageorgiou, A. Ruffing, W. Van Assche, World Scientific Publ., Singapore, (2007), 159-167.
[13] T. A. Chanturia, On monotonic solutions of systems of nonlinear differential equations, (Russian), Annales Polon. Math., 37, (1980), 59-70.
[14] D. Djurčić, A. Torgašev, A Theorem of Galambos-Bojanić-Seneta Type, Abstract and Applied Analysis Volume 2009, Article ID 360794, 6 pages.
[15] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327 (2007) 1297-1306.
[16] J. Galambos, E. Seneta, Regularly varying sequences, Proceedings of the American Mathematical Society, 41 (1973), 110-116
[17] J. Jaroš, T. Kusano, Existence and precise asymptotic behavior of strongly monotone solutions of systems of nonlinear differential equations, Diff. Equat. Applic Vol. 5 No 2 (2013), 185-204.
[18] J. Jaroš, T. Kusano, On strongly monotone solutions of a class of cyclic systems of nonlinear differential equations, Jour. Math. Anal. Applic. Vol. 417 (2014) 996-1017
[19] J. Jaroš, T. Kusano, On strongly decreasing solutions of cyclic systems of second order nonlinear differential equations, Proc. Roy. Soc. Edinburgh, 145 A, (2015), 1007-1028
[20] A. Kapešić, Asymptotic representation of intermediate solutions to a cyclic systems of second-order difference equations with regularly varying coefficients, Electron. J. Qual Theory Differ. Equ., Vol. 63, (2018), pp. 1-23.
[21] A. Kapešić, J. Manojlović, Regularly varying sequences and Emden-Fowler type second-order difference equations, Journal of Difference Equations and Applications Vol. 24, Issue 2, (2018), pp. 245-266.
[22] J. Karamata, Sur certain "Tauberian theorems" de M.M. Hardy et Littlewood, Mathematica Cluj, 3 (1930), 33-48
[23] T. Kusano, J. Manojlović, V. Marić, Increasing solutions of Thomas-Fermi type dif ferential equations - the sublinear case, Bull. T. de Acad. Serbe Sci. Arts, Classe Sci Mat. Nat., Sci. Math. Vol CXLIII, No.36, (2011), 21-36.
[24] T. Kusano, J.V. Manojlović, V. Marić, Complete asymptotic analysis of second-order differential equations of Thomas-Fermi type in the framework of regular variation Sūrikaisekikenkyūsho Kōkyūroku, Qualitative theory of ordinary differential equations in real domains and its applications, No. 1959, 2015.7, pp 14-34.

Therefore, $Y=\left\{Y_{n}\right\}$ satisfies the asymptotic relation (3.11). Then, proceeding exactly as in the proof of Theorem 3.3, replacing X_{n} with Y_{n}, a solution x satisfying $\kappa Y_{n} \leq x_{n} \leq K Y_{n}$, for large n, is obtained by the application of Knaster-Tarski fixed point theorem, and belongs to a class $\mathbb{M}_{0,0}^{-}$.

Proof of Theorem 3.2:

(i) Follows from Theorem 3.3-(i) and Theorem 3.4.
(ii) Follows from Theorem 3.3-(ii) and Theorem 3.5.

3.2. Asymptotic representation of strongly decreasing

RV -solutions
To simplify the "only if" part of the proof of main results we prove the next two lemmas.
Lemma 3.6. Let $p \in \mathcal{R V}(\eta), \eta<\alpha$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. For any $x \in \mathbb{M}_{0,0}^{-} \cap \mathcal{R V}(\rho)$ with $\rho \leq 0$ only one of the following two statements holds:
(i) $\rho=0$ and

$$
x_{n} \sim \frac{1}{(\alpha-\eta)^{\frac{1}{a}}} \sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{a}} \omega_{k}^{\frac{1}{l}} l_{k}^{\frac{1}{k}}, \quad n \rightarrow \infty .
$$

Then, it is $\sigma=\eta-\alpha-1<-1$.
(ii) ρ is given by (3.9) and

$$
x_{n} \sim\left[\frac{n^{\alpha+1} p_{n}^{-1} q_{n}}{(-\rho)^{\alpha}(\alpha-\eta-\rho \alpha)}\right]^{\frac{1}{\alpha-\beta}}, \quad n \rightarrow \infty .
$$

Then, it is $\sigma<\eta-\alpha-1$.
Proof. Suppose that (E) has a solution $x \in \mathbb{M}_{00}^{-} \cap \mathcal{R} \mathcal{V}(\rho)$ with $\rho \leq 0$, satisfying $x_{n}>0, \Delta x_{n}<0$ for $n \geq n_{0}+1 \geq 2$ and expressed with (3.2). Summing (E) for $k \geq n \geq n_{0}$, we get

$$
p_{n}\left(-\Delta x_{n}\right)^{\alpha}=\sum_{k=n}^{\infty} q_{k} x_{k+1}^{\beta},
$$

which yields, using (3.1) and (3.2)

$$
p_{n}\left(-\Delta x_{n}\right)^{\alpha} \sim \sum_{k=n}^{\infty} q_{k} x_{k}^{\beta}=\sum_{k=n}^{\infty} k^{\sigma+\rho \beta} \omega_{k} k_{k^{\prime}}^{\beta} \quad n \rightarrow \infty .
$$

The fact that $x_{n}^{[1]}=p_{n}\left(-\Delta x_{n}\right)^{\alpha} \rightarrow 0$ as $n \rightarrow \infty$ implies

$$
\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} k^{\sigma+\rho \beta} \omega_{k} k_{k}^{\beta}=0,
$$

so it must be $\sigma+\rho \beta \leq-1$. We first consider the case $\sigma+\rho \beta=-1$. Then

$$
p_{n}\left(-\Delta x_{n}\right)^{\alpha} \sim \sum_{k=n}^{\infty} k^{-1} \omega_{k} l_{k}^{\beta}=\Omega_{n}, \quad n \rightarrow \infty,
$$

where $\Omega=\left\{\Omega_{n}\right\} \in \mathcal{S V}$ and $\Omega_{n} \rightarrow 0, n \rightarrow \infty$. Consequently

$$
-\Delta x_{n} \sim\left(\frac{\Omega_{n}}{p_{n}}\right)^{\frac{1}{a}}=n^{-\frac{n}{a}} \xi_{n}^{-\frac{1}{a}} \Omega_{n}^{\frac{1}{n}}, \quad n \rightarrow \infty .
$$

[25] T. Kusano, V. Marić, T. Tanigawa, Regularly varying solutions of generalized Thomas Fermi equations, Bull. T. de Acad. Serbe Sci. Arts, Classe Sci. Mat. Nat., Sci. Math. Vol. CXXXIX, No.34, (2009), 44-45.
[26] T. Kusano, V. Marić, T. Tanigawa, An asymptotic analysis of positive solutions of generalized Thomas-Fermi differential equations - The sub-half-linear case, Nonlinear Analysis Vol. 75 (2012), 2474-2485
[27] W.T. Li, Classification schemes for nonoscillatory solutions of two-dimensional nonlinear difference systems, Comp. Math. Applic., 42 (2001), 341-355
[28] V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics 1726, Springer-Verlar, Berlin-Heidelberg, 2000.
[29] J.V. Manojlović, V. Marić, An asymptotic analysis of positive solutions of Thomas Fermi type differential equations - sublinear case, Memoirs on Differential Equations and Mathematical Physics, Volume 57 (2012), 75-94.
[30] S. Matucci, P. Řehák, Second order linear difference equations and Karamata sequences, Inter. Jour. Difference Equa., 3(2) (2008), 277-288
[31] S. Matucci, P. Řehák, Regularly varying sequences and second order difference equations, Jour. Difference Equa. Appl., 14(1) (2008), 17-30.
[32] S. Matucci, P. Řehák, Regularly varying solutions of second-order difference equations with arbitrary sign coefficients, Adv. Difference Equ., Article ID-673761, 2010.
[33] S. Matucci, P. Řehák, Extremal solutions to a system of n nonlinear differential equations and regularly varying functions, Math. Nachr. 1-18 (2015).
[34] M. Mizukami, M. Naito, H. Usami, Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations, Hiroshima Math. J. 32, (2002), 51-78.
[35] P. Rehák, Asymptotic behavior of increasing solutions to a system of n nonlinear differential equations, Nonlinear Analysis Vol. 77 (2013), 45-58.
[36] P. Řehák, Asymptotic formulae for solutions od linear second-order difference equations, Jour. Difference Equat. Applic. Vol. 22 No. 1 (2016), 107-139.
[37] T. Tanigawa, Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations, Adv. Math. Sci. Appl. 9 (1999) 907-938
[38] B.G. Zhang, S.S. Cheng, On a class of nonlinear difference equations, Jour. Difference Equa. Appl., Vol. 1 (1995), 391-411.

Since $\lim _{n \rightarrow \infty} x_{n}=0$, summing previous relation from n to ∞, we get

$$
x_{n} \sim \sum_{k=n}^{\infty} k^{-\frac{n}{a}}\left(\frac{\Omega_{k}}{\xi_{k}}\right)^{\frac{1}{x}}, \quad n \rightarrow \infty,
$$

implying that $1-\frac{\eta}{\alpha} \leq 0$ i.e. $\eta \geq \alpha$ which is contradiction, so this case is impossible.
Therefore, $\sigma+\rho \beta<-1$. An application of Theorem 2.9-(ii) in (3.23) gives

Because $x_{n} \rightarrow 0, n \rightarrow \infty$, summing (3.26) from n to ∞ we get

From the last relation we conclude that it must be $(\sigma+\rho \beta+1-\eta) / \alpha \leq-1$, so we distinguish two possibilities:

$$
\text { (a) } \frac{\sigma+\rho \beta+1-\eta}{\alpha}=-1, \quad \text { (b) } \frac{\sigma+\rho \beta+1-\eta}{\alpha}<-1 .
$$(3.28)

If (a) holds, then $\sigma+\rho \beta+1=\eta-\alpha$. From (3.27), we get that (3.21) holds, and according to Theorem 2.9-(iii), $x \in \mathcal{S} V$. Thus, $\rho=0$ and (a) implies that $\sigma=\eta-\alpha-1$. On the other hand, if (b) holds, from (3.27), by Theorem 2.9 -(ii), we obtain

$$
x_{n} \sim \frac{n^{\frac{\sigma \cdot \rho \beta+1-n}{4}+1} \omega_{n}^{\frac{1}{n}} \xi_{n}^{-\frac{1}{2}} l_{n}^{\frac{\beta}{n}}}{(-(\sigma+\rho \beta+1))^{\frac{1}{\alpha}}\left(-\frac{\sigma+\rho+1-\eta}{\alpha}-1\right)}, \quad n \rightarrow \infty .
$$

Thus it must be

$$
\rho=\frac{\sigma+\rho \beta+1-\eta}{\alpha}+1,
$$(3.30)

implying that the regularity index of x is given by (3.9). Combined this with the assumption $\rho<0$, we get
that $\sigma<\eta-\alpha-1$. Moreover, using (3.9) i.e. (3.30), we obtain

$$
(-(\sigma+\rho \beta+1))^{\frac{1}{\alpha}}\left(-\frac{\sigma+\rho \beta+1-\eta}{\alpha}-1\right)=\left((\alpha-\eta-\rho \alpha)(-\rho)^{\alpha}\right)^{\frac{1}{x}},
$$

and

Then, from (3.29) we obtain that the asymptotic representation of x is given by (3.22).
Lemma 3.7. Let $p \in \mathcal{R V}(\eta), \eta>\alpha$ and $q \in \mathcal{R V}(\sigma)$. For any $x \in \mathbb{M}_{0,0}^{-} \cap \mathcal{R} \mathcal{V}(\rho)$ with $\rho \leq \frac{\alpha-\eta}{\alpha}$ only one of the following two statements holds:
(i) $\rho=\frac{\alpha-\eta}{\alpha}$ and

$$
\begin{equation*}
x_{n} \sim \frac{\alpha}{\eta-\alpha} n^{\frac{\alpha-\eta}{a}} \xi_{n}^{-\frac{1}{a}}\left(\sum_{k=n}^{\infty} k^{-1} \omega_{k} k_{k}^{\beta}\right)^{\frac{1}{\sigma^{\frac{1}{2}}}}, n \rightarrow \infty ; \tag{3.33}
\end{equation*}
$$

Then, it is $\sigma=\beta \frac{\eta-\alpha}{\alpha}-1$.
(ii) ρ is given by (3.9) and (3.22) holds. Then, it is $\sigma<\beta \frac{\eta-\alpha}{\alpha}-1$.

Proor. Suppose that (E) has a solution $x \in \mathbb{M}_{0,0}^{-} \cap \mathcal{R} V(\rho)$ with $\rho \leq \frac{\alpha-\eta}{\alpha}$, satisfying $x_{n}>0, \Delta x_{n}<0$ for $n \geq n_{0}+1 \geq 2$ and expressed with (3.2). Using (3.1) and (3.2) we have (3.23). As in the proof of previous lemma, the fact that $x_{n}^{11]}=p_{n}\left(\Delta x_{n}\right)^{\alpha} \rightarrow 0$ as $n \rightarrow \infty$ implies that $\sigma+\rho \beta \leq-1$.
If $\sigma+\rho \beta=-1$, then as in the proof of previous lemma we get (3.25), where Ω_{n} is given in (3.24). Using that $\eta>\alpha$, application of Theorem (2.9)-(ii) in (3.25) gives (3.33). Thus, $\rho=\frac{\alpha-\eta}{\alpha}$, implying that $\sigma=\beta \frac{\eta-\alpha}{\alpha}-1$ Next we consider the case $\sigma+\rho \beta<-1$. An application of Theorem 2.9-(ii) in (3.23) give us (3.27) implying implies
which is a contradiction with $\eta>\alpha$. Thus, only (b) in (3.28) can be valid and so from (3.27), as previously, we obtain that ρ is given by (3.9) and x satisfies (3.22). Since, $\rho<\frac{\alpha-\eta}{\alpha}$ from (3.9) we conclude that $\sigma<\frac{\beta \eta}{\alpha}-\beta-1$. $\stackrel{\square}{\square}$

Now, we are in a position to prove the main results.

Theorem 3.8. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta)$ and $q \in \mathcal{R V}(\sigma)$.
(i) Let $\eta<\alpha$. Equation (E) possesses regularly varying solutions x of index $\rho<0$ if and only if (3.4) holds.
(ii) Let $\eta>\alpha$. Equation (E) possesses regularly varying solutions x of index $\rho<\frac{\alpha-\eta}{\alpha}$ if and only if (3.6).

In both cases ρ is given by (3.9) and the asymptotic behavior of any such solution x is governed by the unique formula (3.22).
Proof. The "only if" part: Suppose that $\eta<\alpha$ and $x \in \mathcal{R V}(\rho)$ with $\rho<0$. According to Theorem 2.7-(v) and (vi), $x \in \mathbb{M}^{-}$and $\lim _{n \rightarrow \infty} x_{n}=0$. It is easy to prove (see [6, Lemma 3]) that if $S=\infty$, then for any solution in the class \mathbb{M}^{-}, it holds $\lim _{n \rightarrow \infty} x_{n}{ }^{\text {l }}=0$. Thus, $x \in \mathbb{M}_{0,0}$. Then, it is clear that ony the case (ii) of Lemm 3.6 is admissible for x. Thus, the regularity index of x is given by (3.9) and σ satisfies (3.4).

Suppose that $\eta>\alpha$ and $x \in \mathcal{R} \mathcal{V}(\rho)$ with $\rho<\frac{\alpha-\eta}{\alpha}$. Since $\rho<0$ as previously we conclude that $x \in \mathbb{M}_{0}^{-}$. Therewith, in view of (3.3), by Theorem 2.7-(vi) we get

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{\pi_{n}}=\frac{\eta-\alpha}{\alpha} \lim _{n \rightarrow \infty} n^{o-\frac{\alpha-n}{a}} l_{n} \xi_{n}^{\frac{1}{\hbar}}=0,
$$

mplying that $x \in \mathbb{M}_{0,0}^{-}$. It is clear that only the case (ii) of Lemma 3.7 is admissible for x, implying that the regularity index of x is given by (3.9) and that (3.6) holds.
From Lemmas 3.6 and 37 we obtain that the asymptotic res. From Lemmas 3.6 and 3.7 we obtain that the asymptotic
The "if" part: We perform the simultaneous proof for both of the cases. From Theorem 3.3 follows the existence of a solution $x \in \mathbb{M}_{0.0}^{-}$. It remains to prove that x satisfying (3.15) and (3.17) is a regularly varying index ρ. From (3.15) we have

$$
0<\liminf _{n \rightarrow \infty} \frac{x_{n}}{X_{n}} \leq \limsup _{n \rightarrow \infty} \frac{x_{n}}{X_{n}}<\infty,
$$

where X_{n} is given by (3.8). Application of Lemma 1.2, using (3.11) and (3.17), yields
$L=\limsup _{n \rightarrow \infty} \frac{x_{n}}{X_{n}} \leq \limsup _{n \rightarrow \infty} \frac{\Delta x_{n}}{\Delta X_{n}}=\underset{n \rightarrow \infty}{\lim \sup } \frac{-\left(\frac{1}{p_{k}} \sum_{k=n}^{\infty} q_{k} X_{k+1}^{\beta}\right)^{1 / \alpha}}{-\left(\frac{1}{p_{k}} \sum_{k=n}^{\infty} q_{k} X_{k+1}^{\beta}\right)^{1 / \alpha}}$
$\leq\left(\limsup _{n \rightarrow \infty} \frac{\sum_{k=n}^{\infty} q_{k} K_{k+1}^{\beta}}{\sum_{k=n}^{\infty} q_{k} X_{k+1}^{\beta}}\right)^{1 / \alpha} \leq\left(\limsup _{n \rightarrow \infty} \frac{-q_{n} x_{n+1}^{\beta}}{-q_{n} X_{n+1}^{\beta}}\right)^{1 / a}$
$\leq\left(\limsup _{n \rightarrow \infty} \frac{x_{n+1}}{X_{n+1}}\right)^{\beta / \alpha}=L^{\frac{\beta}{\alpha}}$.

Since $\beta<\alpha$, from above we conclude that
$0<L \leq 1$.
Similarly, we can see that $l=\lim _{\inf }^{n \rightarrow \infty} x_{n} / X_{n}$ satisfies

$$
1 \leq l<\infty .
$$

From (3.34) and (3.35) we obtain that $l=L=1$, which means that $x_{n} \sim X_{n}, n \rightarrow \infty$ and ensures that x is regularly varying solution of (E) with requested regularity index and the asymptotic representation given by (3.22). \quad -
Theorem 3.9. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), \eta<\alpha$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. There exists $x \in \mathbb{M}_{0,0}^{-} \cap n t r-\mathcal{S V}$ if and only (3.5) holds. All such solutions of (E) enjoy the precise asymptotic formule

$$
x_{n} \sim\left[\frac{\alpha-\beta}{\alpha} \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{a}}\right]^{\frac{\alpha}{\alpha-\beta}}, n \rightarrow \infty .
$$

Proof. The "only if" part: Suppose that $x \in \mathbb{M}_{-}^{-} \cap n t r-\mathcal{S V}$. Then, clearly only the statement (i) of Lemma 3.6 could hold. Therefore, $\rho=0, \sigma=\eta-\alpha-1$ and x satisfies (3.21). Then, since $\sigma<-1$, application of Theorem 2.9 gives

$$
\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{\alpha}} \sim \frac{1}{(\alpha-\eta)^{\frac{1}{2}}} \sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{\alpha}} \omega_{k}^{\frac{1}{4}}, \quad n \rightarrow \infty,
$$

where we used that $\sigma+1=\alpha-\eta$. Denote

$$
z_{n}=\sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{4}} \omega_{k}^{\frac{1}{4}} l_{k}^{\frac{\beta}{k}} .
$$

From Theorem 2.9-(iii) clearly $z=\left\{z_{n}\right\} \in \mathcal{S V}$ and (3.21) becomes

$$
x_{n}=l_{n} \sim \frac{z_{n}}{(\alpha-\eta)^{\frac{1}{\alpha}}}, n \rightarrow \infty .
$$

From (3.38) and (3.39) we obtain the asymptotic relation

$$
z_{n}^{-\frac{\varepsilon}{\alpha}}\left(-\Delta z_{n}\right) \sim \frac{n^{-1} \xi_{n}^{-\frac{1}{n}} \omega_{n}^{\frac{1}{n}}}{(\alpha-\eta)^{\frac{\beta}{a^{2}}}}, \quad n \rightarrow \infty .
$$

By (3.39), we have that $z_{n} \rightarrow 0, n \rightarrow \infty$ and clearly $\left\{z_{n}\right\}$ is strictly decreasing. Summing (3.40) from n to ∞, By (3.39), we have that $z_{n} \rightarrow 0, n \rightarrow \infty$ and
using Theorem 2.8 and (3.37), we obtain

Because $1-\frac{\beta}{\alpha}>0, z_{n}^{1-\frac{\beta}{\alpha}} \rightarrow 0, n \rightarrow \infty$, so (3.41) yields that the second condition in (3.5) is satisfied as well as
that the asymptotic expression for x is

$$
x_{n} \sim \frac{1}{(\alpha-\eta)^{\frac{1}{\alpha-\beta}}}\left(\frac{\alpha-\beta}{\alpha} \sum_{k=n}^{\infty} k^{-1} \xi_{k}^{-\frac{1}{\alpha}} \omega_{k}^{\frac{1}{k}}\right)^{\frac{\alpha}{\alpha-\beta}} \sim\left(\frac{\alpha-\beta}{\alpha} \sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{a}}\right)^{\frac{a}{a-\beta}},
$$

A. B. Kapešić, I. V. Manoilović/ Filomat 33:9 (2019), 2751-2770
when $n \rightarrow \infty$. This completes the "only if" part of the proof of Theorem 3.9
The "if" part: From Theorem 3.4 we have the existence of a solution $x \in \mathbb{M}_{0,0}^{-}$. In the same way as in the proof of Theorem 3.8, replacing X_{n} with T_{n} given by (3.19) and with the application of Lemma 1.2 we obtain hat $x_{n} \sim T_{n}, n \rightarrow \infty$, implying that such a solution is slowly varying and enjoys the precise asymptotic behavior (3.36). \quad a
Theorem 3.10. Suppose that $p \in \mathcal{R V}(\eta), \eta>\alpha$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$. There exists $x \in \mathbb{M}_{0,0}^{-} \cap \mathcal{R V}\left(\frac{\alpha-\eta}{\alpha}\right)$ if and only if (3.7) holds. All such solutions of (E) enjoy the precise asymptotic behaviour

$$
x_{n} \sim\left(\alpha^{\alpha-1} \frac{\alpha-\beta}{(\eta-\alpha)^{\alpha}}\right)^{\frac{1}{\alpha-\beta}} n p_{n}^{-\frac{1}{\alpha}}\left[\sum_{k=n}^{\infty} k^{\beta} q_{k} p_{k}^{-\frac{\varepsilon}{\alpha}}\right]^{\frac{1}{\alpha-\beta}}, \quad n \rightarrow \infty .
$$

Proof. The "only if" part: Suppose that $x \in \mathbb{M}_{0,0}^{-} \cap \mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{\alpha}\right)$. Then, clearly only the statement (i) of Lemma 3.7 could hold. Therefore, $\rho=\frac{\alpha-\eta}{\alpha}, \sigma=\frac{\beta}{\alpha} \eta-\beta-1$ and x satisfies (3.33). From (3.2) and (3.33) we get

$$
l_{n} \sim \frac{\alpha}{\eta-\alpha} \xi_{n}^{-\frac{1}{\alpha}} \Omega_{n}^{\frac{1}{n}}, n \rightarrow \infty,
$$

where Ω_{n} is given in (3.24). From (3.24), we conclude that $\Omega \in \mathcal{S V}, \Omega_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left\{\Omega_{n}\right\}$ is strictly decreasing. We transform (3.43) into the asymptotic relation for Ω

$$
\Omega_{n}^{-\frac{\beta}{n}} \Delta \Omega_{n} \sim-\left(\frac{\alpha}{\eta-\alpha}\right)^{\beta} n^{-1} \omega_{n} \xi_{n}^{-\frac{\alpha}{\alpha}}=-\left(\frac{\alpha}{\eta-\alpha}\right)^{\beta} n^{\beta} q_{n} p_{n}^{-\frac{\beta}{\alpha}}, \quad n \rightarrow \infty .
$$

Summing (3.44) from n to ∞ and using Theorem 2.8 we obtain

$$
\begin{equation*}
\frac{\alpha}{\alpha-\beta} \Omega_{n}^{1-\frac{\beta}{\alpha}} \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\beta} \sum_{k=n}^{\infty} k^{\beta} q_{k} p_{k}^{-\frac{\beta}{\alpha}}, \quad n \rightarrow \infty . \tag{3.45}
\end{equation*}
$$

Because $\Omega_{n}^{1-\frac{8}{\alpha}} \rightarrow 0$ as $n \rightarrow \infty$, (3.45) yields that the second condition in (3.7) is satisfied. The asymptotic expression (3.33) for x becomes

$$
x_{n} \sim \frac{\alpha}{\eta-\alpha} n^{\frac{\alpha-n}{a}} \xi_{n}^{-\frac{1}{\alpha}} \Omega_{n}^{\frac{1}{\hbar}} \sim\left(\frac{\alpha}{\eta-\alpha}\right)^{\frac{\alpha}{\alpha-\beta}} n p_{n}^{-\frac{1}{2}}\left[\frac{\alpha-\beta}{\alpha} \sum_{k=n}^{\infty} k^{\beta} q_{k} p_{k}^{-\frac{\beta}{\alpha}}\right]^{\frac{1}{a-\beta}}, n \rightarrow \infty .
$$

This completes the "only if" part of the proof of Theorem 3.10.
The "if" part: From Theorem 3.5 we obtain the existence of a solution $x \in \mathbb{M}_{0,0}^{-}$, while application of Lemm 1.2 as in the proof of Theorem 3.8, with Y_{n} instead of X_{n}, where Y_{n} is given by (3.20), proves that $x_{n} \sim Y_{n}$ $n \rightarrow \infty$, so that such a solution is in fact a $\mathcal{R} \mathcal{V}$-solution of index $\frac{\alpha-\eta}{\alpha}$, with the precise asymptotic behavior given by (3.42).

4. Corollaries and example

In the previous section, we have shown that the existence of strongly decreasing $\mathcal{R V}$-solutions for the equation (E) with $\mathcal{R V}$ coefficients is fully characterized by the assumption $I<\infty$ if $S=\infty$ and by th assumption $I<\infty$ if $S<\infty$. In fact, the following corollary holds.

Corollary 4.1. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), \eta \neq \alpha$ and $q \in \mathcal{R V}(\sigma)$.
(i) Let $S=\infty$. Equation (E) has strongly decreasing $\mathcal{R} \mathcal{V}$-solutions if and only if $I<\infty$,
(ii) Let $S<\infty$. Equation (E) has strongly decreasing $\mathcal{R} \mathcal{V}$-solutions if and only if $J<\infty$

Moreover, if $S=\infty$, then $J=\infty$ so by Theorem $1.1 \mathbb{M}_{0, \lambda}^{-}=\emptyset$. Otherwise, if $S<\infty$, denoting the series $Q=\sum_{k=1}^{\infty} q_{k}$, we have two cases:
(a) If $Q=\infty$, then $I=\infty$, so by Theorem 1.1 we have $\mathbb{M}^{-}=\mathbb{M}_{0}^{-}$i.e. $\mathbb{M}_{B}^{-}=\emptyset$.
(b) If $Q<\infty$, then $I<\infty$, so by Theorem 1.1 we have $\mathbb{M}^{-}=\mathbb{M}_{0}^{-} \cup \mathbb{M}_{B}^{-}$

Using conclusions from the previous corollary and Theorem 1.1 , we get the next two corollaries where we will use the following symbols:
$* \mathcal{R}$ denote the set of all regularly varying solutions,
$* \mathcal{R}^{-}$denote the set of all decreasing regularly varying solutions,
$* \mathcal{R}_{0}^{-}=\mathcal{R} \cap \mathbb{M}_{0}^{-}$.
$* \mathcal{R}_{0,0}^{-}=\mathcal{R} \cap \mathbb{M}_{0,0}^{-}$.
Corollary 4.2. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), q \in \mathcal{R} \mathcal{V}(\sigma)$ and $S=\infty$. Then,

$$
\mathcal{R}^{-}=n t r-\mathcal{S V} \cup \mathcal{R} \mathcal{V}\left(\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}\right) \cup \mathbb{M}_{B}^{-}
$$

if and only if $I<\infty$.
Corollary 4.3. Suppose that $p \in \mathcal{R} \mathcal{V}(\eta), q \in \mathcal{R} \mathcal{V}(\sigma)$ and $S<\infty$. Then,
(i) If $\sigma<-1$ or $\sigma=-1$ and $Q<\infty$, then

$$
\mathcal{R}^{-}=\mathcal{R} \mathcal{V}\left(\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}\right) \cup \mathbb{M}_{0, l}^{-} \cup \mathbb{M}_{\beta}^{-} .
$$

(ii) If $\sigma=-1$ and $Q=\infty$ or $-1<\sigma<\frac{\beta \eta}{\alpha}-\beta-1$, then

$$
\mathcal{R}^{-}=\mathcal{R}_{0}^{-}=\mathcal{R} \mathcal{V}\left(\frac{\sigma+\alpha+1-\eta}{\alpha-\beta}\right) \cup \mathbb{M}_{0, l}^{-}
$$

(iii) If $\sigma=\frac{\beta \eta}{\alpha}-\beta-1$ and $J<\infty$, then

$$
\mathcal{R}^{-}=\mathcal{R}_{0}^{-}=\mathcal{R} \mathcal{V}\left(\frac{\alpha-\eta}{\alpha}\right) \cup \mathbb{M}_{\mathbf{0}_{0, l}^{-}}^{-} .
$$

(iv) If $\sigma=\frac{\beta \eta}{\alpha}-\beta-1$ and $J=\infty$ or $\sigma>\frac{\beta \eta}{\alpha}-\beta-1$, then

$$
\mathcal{R}^{-}=\emptyset .
$$

Example 4.4. Consider the difference equation

$$
\Delta\left(\frac{n^{\eta}}{\log n}\left(\Delta x_{n}\right)^{3}\right)=\frac{n^{n-7} \varphi_{n}}{\log ^{5} n} \sqrt{x_{n+1}{ }^{3}}, \quad n \geq 1,
$$

where φ_{n} is a positive real-value sequence such that $\lim _{n \rightarrow \infty} \varphi_{n}=\delta$ and $\eta \neq 3$. In this equation, $\alpha=3, \beta=\frac{3}{2}$, $\left\{p_{n}\right\} \in \mathcal{R} \mathcal{V}(\eta)$ and $\left\{q_{n}\right\} \in \mathcal{R} \mathcal{V}(\sigma)$, where $\sigma=\eta-7$.
A. B. Kapešić, I. V. Manoilović/ Filomat 33:9 (2019), 2751-2770
(i) Suppose that $\eta<3$. In this case

$$
\sigma=\eta-7<\eta-4=\eta-\alpha-1,
$$

so in view of Theorem 3.8 -(i) and Theorem 1.1 this equation has a strongly decreasing $\mathcal{R} \mathcal{V}$-solution of index $\rho<0$ as well as a solution in $\mathbb{M}_{B}^{-}=\operatorname{tr}-\mathcal{S V}$. More precisely, by Theorem 3.8-(i) equation (4.1) has a strongly
decreasing solution which belongs to $\mathcal{R} \mathcal{V}(-2)$. That solution has asymptotic behavior

$$
\begin{equation*}
x_{n} \sim\left(\frac{\delta}{8(9-\eta)}\right)^{\frac{2}{3}} n^{-2}(\log n)^{-\frac{8}{3}}, \quad n \rightarrow \infty . \tag{4.2}
\end{equation*}
$$

If

$$
\left.\varphi_{n}=\frac{n^{7}(n+1)^{3}}{(\log n)^{4}(\log (n+1))^{5}}(\log n)^{9} \psi_{n}-(\log (n+1))^{9}\left(\frac{n+1}{n}\right)^{\eta} \psi_{n+1}\right),
$$

where

$$
\psi_{n}=\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\left(\frac{\log n}{\log (n+1)}\right)^{\frac{8}{3}}\right)^{3},
$$

then $\delta=8(9-\eta)$ and the considered equation has an exact solution $n^{-2}(\log n)^{-\frac{8}{3}}$
(ii) For $\eta \in(3,9)$ we have that $\eta>\alpha$ and $\sigma=\eta-7<\frac{\eta-5}{2}=\frac{\beta \eta}{\alpha}-\beta-1$, so in view of Theorem 3.8-(ii) the equation (4.1) has a strongly decreasing solution which belongs to $\mathcal{R} \mathcal{V}(-2)$ and satisfies (4.2). This equation also possess a solution which belongs to a class $\mathbf{M}_{0,1}^{-}$
(iii) Let $\eta=9$. Then, $\sigma=2=\frac{\beta \eta}{\alpha}-\beta-1$ and $J<\infty$. By Theorem 3.10 the equation (4.1) has a solution $x \in \mathcal{R V}\left(1-\frac{\eta}{a}\right)=\mathcal{R} \mathcal{V}(-2)$ and any such solution x has the asymptotic representation

$$
\begin{aligned}
x_{n} & \sim\left(\frac{\delta}{16}\right)^{\frac{2}{3}} n^{-2}(\log n)^{\frac{1}{3}}\left(\sum_{k=n}^{\infty} k^{-1}(\log k)^{-\frac{0}{2}}\right)^{\frac{2}{3}} \\
& \sim\left(\frac{\delta}{16}\right)^{\frac{2}{3}} n^{-2}(\log n)^{\frac{1}{3}}\left(\frac{2}{7}\right)^{\frac{2}{3}}(\log n)^{-\frac{2}{3}}=\left(\frac{\delta}{56}\right)^{\frac{2}{3}}(n \log n)^{-2}, \quad n \rightarrow \infty,
\end{aligned}
$$

where we used that

$$
\sum_{k=n}^{\infty} k^{-1}(\log k)^{-\frac{9}{2}} \sim \int_{n}^{\infty} x^{-1}(\log x)^{-\frac{9}{2}} d x, \quad n \rightarrow \infty .
$$

If
where

$$
\varphi_{n}=\frac{(n+1)^{3}(\log (n+1))^{3}(\log n)^{5}}{n^{2}}\left(\chi_{n}-\chi_{n+1}\right),
$$

where

$$
\chi_{n}=\frac{n^{3}}{(\log n)^{7}}\left(1-\left(\frac{n \log n}{(n+1) \log (n+1)}\right)^{2}\right)^{3},
$$

then $\lim _{n \rightarrow \infty} \varphi_{n}=56$ and $x_{n}=(n \log n)^{-2}$ is an exact solution of the equation (4.1)
(iv) If $\eta>9$, then $\sigma=\eta-7>\frac{\eta-5}{2}=\frac{\beta \eta}{\alpha}-\beta-1$ so $J=\infty$. Therefore, by Corollary 4.1 the equation (4.1) (iv) If $\eta>9$, then $\sigma=\eta-7>\frac{1}{2}=\frac{\bar{\alpha}}{\alpha}-\beta-1$ so J
does not have decreasing regularly varying solutions.

Example 4.5. Consider the difference equation

$$
\Delta\left(-n^{\eta} \sqrt{\log n}\left(\Delta x_{n}\right)^{2}\right)=\frac{n^{\eta-3} \varphi_{n}}{(\log n)^{19 / 6}} \sqrt[3]{x_{n+1}}, \quad n \geq 1,
$$

where φ_{n} is a positive real-value sequence such that $\lim _{n \rightarrow \infty} \varphi_{n}=\delta$ and $\eta \neq 2$. Here, $p_{n}=n^{\eta} \sqrt{\log n}$, and $q_{n}=\eta^{\eta-3} \varphi_{n}(\log \eta)^{-19 / 6}$, so $p \in \mathcal{R} \mathcal{V}(\eta)$ and $q \in \mathcal{R} \mathcal{V}(\sigma)$, where $\sigma=\eta-3=\eta-\alpha-1$.

$$
\sum_{k=n}^{\infty}\left(\frac{1}{p_{k}} \sum_{j=k}^{\infty} q_{j}\right)^{\frac{1}{\alpha}} \sim \sum_{k=n}^{\infty} \sqrt{\frac{\varphi_{n}}{2-\eta}} \frac{1}{k(\log k)^{11 / 6}}<\infty, \quad n \rightarrow \infty,
$$

by Theorem 3.10 the equation (4.4) has a nontrivial slowly varying solution and any such solution x has the asymptotic representation

$$
x_{n} \sim\left(\frac{\delta}{2-\eta}\right)^{\frac{3}{3}} \cdot(\log n)^{-1}, \quad n \rightarrow \infty .
$$

If

$$
\varphi_{n}=n^{3}\left(\frac{\log n}{\log (n+1)}\right)^{\frac{10}{6}}\left[\frac{\left(\log \frac{n+1}{n}\right)^{2}}{(\log n)^{\frac{2}{2}}(\log (n+1))^{\frac{1}{2}}}-\left(\frac{n+1}{n}\right)^{n}\left(\frac{\log \frac{n+2}{n+1}}{\log (n+2)}\right)^{2}\right],
$$

hen $\delta=2-\eta$ and considered equation has an exact solution $x_{n}=(\log n)^{-1}, x \in n t r-\mathcal{S V}$. Notice that in the case $\eta>2=\alpha$, since $\sigma>\frac{\beta \eta}{\alpha}-\beta-1$, using Corollary 4.3, we conclude that $\mathcal{R}^{-}=\emptyset$.

Acknowledgement

The authors are very grateful to the reviewers for their valuable suggestions and useful comments, which led to an improvement of this paper

References

[1] R.P. Agarwal, M. Bohner, S.R. Grace, D. O'Regan, Discrete oscillation theory, Hindawi Publishing Corporation, New York, 2005 ,
[2] R.P. Agarwal, W.T. Li, P..H. Pang, Asymptotic behavior of nonlinear difference systems,Appl. Math. Comput. 140 (2003) 307-316.
[3] R.P. Agarwal, J.V. Manojlović, On the existence and the asymptotic behavior of nonoscillatory solutions of second order quasilinear [4] N.f. Bingham, C.M. Foldie, J.L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications 27 , Cambridg

161 M. Cecchi, Z. Došlà, M. Marini, Positive cecreasing solus [7] M. Cechhi, Z. Dosila, M. Marini, Unbounded solutions of quasi-inear difference equations, Computers and Mathematics with Applications, Vol
[8] M. Cecchi, Z. Dosslá, M. Marini, Limit behavior for quasilinear difference equations, Proceedings of Sixth International Conference
 Adv. Difiterence Equ., Article IDD-505324, 2008.
[10] M. Cecchi, Z. Dosla, M. Marini, On oscillation and nonoscillation properties of Emden-Folwer difference equations, Cent. Eur. [11] M. Math., Vocchi. Z. Z. Doosid, M. M. Marini, Intermediate solutions for nonlinear difference equations with p-Laplacian, Advanced Studie 12] M. Cecchi Z Zointic, 53 (2009), 45-52.
 Difference Equations, Special Function and Ortogonal Polynomials, Munich 2005, Eds. S. Elaydi, J. Cushing, R. Lasser,
Papageorgiou, A. Ruffing, W. Van Asche, World Scientific Publ, Singapore, (2007), 159-167. 13] T. A. Chanturia, On monotonic solutions of systems of nonlinear differential equations, (Russian), Annales Polon. Math., 37,
(1980), 59-70.
[14] D. Diurčic, A. Torgašev, A Theorem of Galambos-Bojanic--Seneta Type, Abstract and Applied Analysis Volume 2009, Article iD
300794,

A. B. Kapesićc. . V. Manoilozić / Filomat 33:9 (2019), 2751-2770
[17] J.Jaroš, T. Kusano, Existence and precise asymptotic behavior of strongly monotone solutions of systems of nonlinear differential equations, Diff. Equat. Applic Vol. 5 No. 2 (2013), 185 -204
. 18] J. Aaros, T. Kusano, On strongly mono
Anal Applic. Vol. 417 (2014 $996-1017$.

[20] A. Kapesici, Asymptotic representation of intermediate solutions to a cyclic systems of second-order difference equations with

[21] A. Kapesicé, I. Manoilović Regularly varying sequences and EmdenFowler type second-order difference equations Journal Difference Equations and Applications, Vol. 24, Issue 2, (2018), pp. 245-266.
[22] J. Karamata, Sur certain "Tauberian theorems" de M.M. Hard et Littlewood, Mathematica Clui, 3 (1930), 33-48.
[23] T. Kusano, J. Manoijovicic, V. Mariic, Inceereasing solutions of Thomas-Fermit ype differential equations - the sublinear case, Bull. T.
[24] T. Kusano, J.V. Manojlovic, V. Maric, Complete asymptotic a analysis of second-order differential equations of Thomas-Fermi typ in the framework of regular variation, SA rikaisekikenkyÂsho KÅkyÂroku, Qualitative theory of ordinary differential equation in real domains and its applications, No. 1959, 2015.7, pp 14-34.
S. Ki. Astron, , Vlasse Scici. Mat. Nat, Sci. Math., Vol. CxxXIX, No.34, (2009), 41-45.

- The sub-half-linear case, Nonlinear Analysis Vol. 75 (2012), 2474--2485.
[27] W.T. Li, Classification schemes for nonoscillatory solutions of two-dimensional nonlinear difference systems, Comp. Math.
A8plic, 42 (2001), $341-355$ V. Maric, Regular Variation and Differential Equations, Lecture Notes in Mathematics 1726, Springer-Verlar, Berlin-Heidelberg
[28] 20 Maric
200
[29] J.V. Man
case, Me
[30] S. Matuc
case, Memoirs on Differential Equations and Mathematical Physici, Volume 57 (2011), 75 -94.
30] S. Matucci, P. Rehak

277. Second order linear difference equations and Karamata sequences, Inter. Jour. Difference Equa., $3(2)$ (2008)
[31] S. Matucci, P. Ǩehák, Regularly varying sequences and second order difference equations, Jour. Difference Equa. Appl., 14(1)
(2008), 17-30.
[32] S. Matucci, P. Ǩehák, Regularly varying solutions of second-order difference equations with arbitrary sign coefficients, Ady

B3] S. Matucci, P. Ke hák, Extremal solutions to a system of n nonlinear differential equations and regularly varying functions, Math
[34] M. Maizukami, M. Naito. H. Usami, Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential
equations, Hiroshima Math J. .32, (2002), 5178 .
135] P. Rehak, Asymptotic behavior of increasing solutions to a system of n nonlinear differential equations, Nonlinear Analysis Vol.
36] P. Rehâk, Asymptotic formulae for solutions od linear second-order difference equations, Jour Difference Equat. Applic. Vol. 22 N7] No.1 (2016), 107-139.
Math. Sci. Appl. 9 (1999) 907-938 1381 B.G. Zhang, S.S. Cheng, On a class of nonlinear difference equations, Jour. Difference Equa. Appl., Vol. 1 (1995), 391-411.
