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1 Introduction

Well-known Banach fixed point theorem, also known as Banach contraction
principle, was a foundation for a development of metric fixed point theory and
found applications in various areas. There were many generalizations of this
result in the last years. We can observe two main directions in this area of
research, including different contraction conditions or introducing analogous
concept on different spaces such as partial, cone-metric, b-metric spaces, etc.
Russian mathematician A. I. Perov [21] defined generalized cone metric space
by defining a metric with values in R

n. Then, this concept of metric space
allowed him to define a new class of mappings, known as Perov contractions,
which satisfy contractive condition similar to Banach’s, but with a matrix
A ∈ R

n×n with nonnegative entries instead of constant q. This result found
main application in the area of differential equations ([22, 28, 25]).

In [6] was presented extension of Perov theorem on a cone metric space,
normal or solid. The concept of cone metric space (vector value metric space,
K-metric space) has a long history (see [14, 26, 32]) and first fixed point
theorems in cone metric spaces were obtained by Schröder [29, 30] in 1956.
Cone metric space may be considered as a generalization of metric space and
it is focus of the research in metric fixed point theory last few decades (see,
e.g., [1, 2, 4], [9], [12], [15], [17], [27], [31] for more details). Concept of cone
metric includes generalized metric in the sense of Perov, and contractive
condition defined in [6] introduces a bounded linear operator instead of a
matrix. Other requirements for this operator varies based on the ki
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What do you think, how many new papers are published every year in SCIe
journals? And what about Mathematics only? How can we be sure in cor-
rectness of those papers? I believe we have editors and reviewers for this
purpose, but mistakes definitely happen. What is really hard to confirm is
the novelty of presented results-even though it does not look the same it
can easily turn out to be. The topic of today’s talk is exactly that type
of result but with a twist-the new interpretation of the well-known result
has great impact in other areas of Mathematics and has significantly better
performance. You have all heard for famous Banach contraction principle
and its impact in different areas of Mathematics. On the other hand, Perov
theorem and its extensions have been widely researched in the last decade in
different settings. So now we have numerous results regarding common fixed
point problem, coupled fixed point problem, multivalued mappings, Fisher
contraction, Matkowski contraction and so on. What we intend to show to-
day is that the extension of Perov theorem on normal cone metric space is
equivalent to the famous Banach fixed point theorem.

Perov is a Russian mathematician who worked in the area of DEs and
in 1956. presented an interesting fixed point result as a tool for solving one
type of DEs. It is interesting that he has presented only one more paper with
the application of that fixed point theorem and there was no shown interest
from scientific community for this result until 2000s. One of the first papers
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This paper is focused on a relation between Banach and Perov theorem
along with its generalizations on a complete normal cone metric space. Some
equivalents between metric and normal cone metric spaces are presented and
used to obtain different proof approach for several Perov type results.

2 Preliminaries

Some basic definitions and facts which are applied in subsequent sections
are collected in this section. Since some correlations will be made, we give
basic overview on generalized metric space in the sense of Perov, cone metric
spaces and b-metric spaces.

Let X be a nonempty set and n ∈ N.

Definition 2.1. ([21]) A mapping d : X ×X 7→ R
n is called a vector-valued

metric on X if the following statements are satisfied for all x, y, z ∈ X.

(d1) d(x, y) ≥ 0n and d(x, y) = 0n ⇔ x = y, where 0n = (0, . . . , 0) ∈ R
n;

(d2) d(x, y) = d(y, x);

(d3) d(x, y) ≤ d(x, z) + d(z, y).

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, then x ≤ y means that xi ≤ yi, i =

1, n.
Throughout this paper we denote by Mn,n the set of all n× n matrices, by
Mn,n(R

+) the set of all n × n matrices with nonnegative entries. We write
Θn for the zero n×n matrix and In for the identity n×n matrix and further
on we identify row and column vector in R

n.
A matrix A ∈ Mn,n(R

+) is said to be convergent to zero if Am → Θn, as
m → ∞.

Theorem 2.2. (Perov [21, 22]) Let (X, d) be a complete generalized metric
space, f : X 7→ X and A ∈ Mn,n(R

+) a matrix convergent to zero, such that

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X.

Then:

(i) f has a unique fixed point x∗ ∈ X;
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on this topic, almost half of century later, was by Prof. Precup from Roma-
nia who gave emphasise on the imapct of Perov fixed point theorem and the
faster convergence rate of the iterative sequence as its biggest advantage in
comparison with Banach contraction principle.
The idea behind Perov theorem is in introducing matrix in a role of contrac-
tive constant. But first of all, we will change our perception of distance by
introducing the concept of generalized metric space.

Let X be a nonempty set and n ∈ N.

Definition 1.1. ([22]) A mapping d : X ×X 7→ R
n is called a vector-valued

metric on X if the following statements are satisfied for all x, y, z ∈ X.

(d1) d(x, y) ≥ 0n and d(x, y) = 0n ⇔ x = y, where 0n = (0, . . . , 0) ∈ R
n;

(d2) d(x, y) = d(y, x);

(d3) d(x, y) ≤ d(x, z) + d(z, y).

In order to understand the definition, note that if x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ R

n, then x ≤ y means that xi ≤ yi, i = 1, n, so it is a type of
lexicographic partial ordering.
Recall that Mn,n is the set of all n × n matrices, Mn,n(R

+) the set of all
n × n matrices with nonnegative entries. Also Θn is the zero n × n matrix
and In is the identity n × n matrix. Do you know why can we identify row
and column vector in R

n?
If you recall the Banach contraction principle, the most important part is
that the contractive constant q is between 0 and 1. Why so?
I have mentioned that we want to have now a matrix in a role of contractive
constant, so we must see what does it mean that a matrix converges to zero.
A ∈ Mn,n(R

+) is said to be convergent to zero if Am → Θn, as m → ∞.
At this moment, we have prepared the stage for a definition of Perov contrac-
tion aka generalized contraction and existence and uniqueness theorem for
such mapping on a complete generalized metric space. (What does complete
mean here?)

Theorem 1.2. (Perov [22, 23]) Let (X, d) be a complete generalized metric
space, f : X 7→ X and A ∈ Mn,n(R

+) a matrix convergent to zero, such that

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X.

Then:
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(ii) the sequence of successive approximations xn = f(xn−1), n ∈ N, con-
verges to x∗ for any x0 ∈ X;

(iii) d(xn, x
∗) ≤ An(In − A)−1(d(x0, x1)), n ∈ N;

(iv) if g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X

and some c ∈ R
n, then by considering the sequence yn = gn(x0), n ∈ N,

one has

d(yn, x
∗) ≤ (In − A)−1(c) + An(In − A)−1(d(x0, x1)), n ∈ N.

This result was extended on a setting of cone metric spaces.

Definition 2.3. Let E be a real Banach space with a zero vector θ. A subset
P of E is called a cone if:

(i) P is closed, nonempty and P 6= {θ};

(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

Given a cone P ⊆ E, the partial ordering ≤ with respect to P is defined
by x ≤ y if and only if y−x ∈ P . We write x < y to indicate that x ≤ y but
x 6= y, while x ≪ y denotes y − x ∈ intP where intP is the interior of P .

The cone P in a real Banach space E is called normal if there is a number
K > 0 such that for all x, y ∈ P ,

θ ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ . (2.1)

The least positive number satisfying (2.1) is called the normal constant of P .
The cone P is called solid if int P 6= ∅.

Definition 2.4. [14] Let X be a nonempty set, and let P be a cone on a real
ordered Banach space E. Suppose that the mapping d : X×X 7→ E satisfies:

(d1) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x), for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.
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(i) f has a unique fixed point x∗ ∈ X;

(ii) the sequence of successive approximations xn = f(xn−1), n ∈ N, con-
verges to x∗ for any x0 ∈ X;

(iii) d(xn, x
∗) ≤ An(In − A)−1(d(x0, x1)), n ∈ N;

(iv) if g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X

and some c ∈ R
n, then by considering the sequence yn = gn(x0), n ∈ N,

one has

d(yn, x
∗) ≤ (In − A)−1(c) + An(In − A)−1(d(x0, x1)), n ∈ N.

Compare this theorem with the Banach fixed point theorem? What are
the similarities and what the differences? Do you think that those results are
equivalent? I have mentioned Prof. Precup’s paper, you can give it a look
for more examples.
Since generalized metric space is just a special kind of cone metric space
(normal or not?), it is natural to try to transfer this result in the setting
of cone metric spaces. Have you heard about cone metric spaces? Cone is
obviously well known term from the Geometry. If you think about it, it has
a top which could be observed as zero vector, it is convex and when we apply
symmetry to its axe we get disjoint cone only with same top. And therefore
we have such definition of cone in Banach space.

Definition 1.3. Let E be a real Banach space with a zero vector θ. A subset
P of E is called a cone if:

(i) P is closed, nonempty and P 6= {θ};

(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

Given a cone P ⊆ E, the partial ordering ≤ with respect to P is defined
by x ≤ y if and only if y−x ∈ P . We write x < y to indicate that x ≤ y but
x 6= y, while x ≪ y denotes y − x ∈ intP where intP is the interior of P .
What happens when we look at the usual parial ordering on the real line?
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Then d is called a cone metric on X and (X, d) is a cone metric space.

It is known that the class of cone metric spaces is bigger than the class
of metric spaces. A lot of fixed point results, such as Banach contraction
principle, are proved in the frame of cone metric spaces ([1, 2, 4], [12],[17,
18, 19]).

Suppose that E is a Banach space, P is a solid cone in E, whenever it is
not normal, and ≤ is the partial order on E with respect to P.

Definition 2.5. The sequence {xn} ⊆ X is convergent in X if there exists
some x ∈ X such that

(∀ c ≫ θ)(∃n0 ∈ N)n ≥ n0 =⇒ d(xn, x) ≪ c.

We say that a sequence {xn} ⊆ X converges to x ∈ X and denote that
with limn→∞ xn = x or xn → x, n → ∞. Point x is called a limit of the
sequence {xn}.

Definition 2.6. The sequence {xn} ⊆ X is a Cauchy sequence if

(∀ c ≫ θ)(∃n0 ∈ N)n,m ≥ n0 =⇒ d(xn, xm) ≪ c.

Every convergent sequence is a Cauchy sequence, but reverse do not hold.
If any Cauchy sequence in a cone metric space (X, d) is convergent, then X

is a complete cone metric space.
As proved in [14], if P is a normal cone, even in the case intP = ∅, then

{xn} ⊆ X converges to x ∈ X if and only if d(xn, x) → θ, n → ∞. Similarly,
{xn} ⊆ X is a Cauchy sequence if and only if d(xn, xm) → θ, n,m → ∞.
Also, if limn→∞ xn = x and limn→∞ yn = y, then d(xn, yn) → d(x, y), n → ∞.

Let us emphasise that this equivalences do not hold if P is a non-normal cone.

Perov generalized metric space is obviously a kind of a normal cone met-
ric space. Defined partial ordering determines a normal cone P = {x =
(x1, . . . , xn) ∈ R

n | xi ≥ 0, i = 1, n} on R
n, with the normal constant K = 1.

Evidently, A(P ) ⊆ P if and only if A ∈ Mn,n(R
+).

One of the results in [6] is a new generalization of Banach contraction
principle in the sense of Perov.

Theorem 2.7. Let (X, d) be a complete cone metric space with a solid cone
P , d : X ×X 7→ E, f : X 7→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P ,
such that

d(f(x), f(y)) ≤ A (d(x, y)) , x, y ∈ X. (2.2)

Then:
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The cone P in a real Banach space E is called normal if there is a number
K > 0 such that for all x, y ∈ P ,

θ ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ . (1.1)

The least positive number satisfying this inequality is called the normal con-
stant of P . The cone P is called solid if int P 6= ∅.
The cone will be the base for new approach to understanding the distance.
Distance is captured as nonnegative number, but now we will show another
approach-it the values will be contained in a cone.

Definition 1.4. [15] Let X be a nonempty set, and let P be a cone on a real
ordered Banach space E. Suppose that the mapping d : X×X 7→ E satisfies:

(d1) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x), for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is a cone metric space.

Do you know some examples of cone metric space? What about general-
ized metric space in the sense of Perov?

When we talk about cone metric spaces, we can also define convergence
and the term of Cauchy sequence.

Definition 1.5. The sequence (xn) ⊆ X is convergent in X if there exists
some x ∈ X such that

(∀ c ≫ θ)(∃n0 ∈ N)n ≥ n0 =⇒ d(xn, x) ≪ c.

We say that a sequence (xn) ⊆ X converges to x ∈ X and denote that
with limn→∞ xn = x or xn → x, n → ∞. Point x is called a limit of the
sequence (xn).

Definition 1.6. The sequence (xn) ⊆ X is a Cauchy sequence if

(∀ c ≫ θ)(∃n0 ∈ N)n,m ≥ n0 =⇒ d(xn, xm) ≪ c.
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(i) f has a unique fixed point z ∈ X;

(ii) For any x0 ∈ X the sequence xn = f(xn−1), n ∈ N, converges to z and

d(xn, z) ≤ An(I − A)−1(d(x0, x1)), n ∈ N;

(iii) Suppose that g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for
all x ∈ X and some c ∈ P . Then if yn = gn(x0), n ∈ N, we have

d(yn, z) ≤ (I − A)−1(c) + An(I − A)−1(d(x0, x1)), n ∈ N.

Furthermore, there was presented a similar result for normal cone metric
space, but instead of the requirement of positiveness and r(A) < 1, only
requirement is K‖A‖ < 1 where K is a normal constant. Also, this normal
cone is not necessarily solid.

Theorem 2.8. Let (X, d) be a complete cone metric space, d : X ×X 7→ E,
P a normal cone with a normal constant K, A ∈ B(E) and K‖A‖ < 1. If
the condition (2.2) holds for a mapping f : X 7→ X, then f has a unique
fixed point z ∈ X and the sequence xn = f(xn−1), n ∈ N, converges to z for
any x0 ∈ X.

In Sections 11.3-11.5 of the classical monograph of Collatz [5] is given a
general fixed point theorem in cone metric spaces, and in Section 12.1 it is
considered a special case of this theorem. We note that that the first two
parts of previous theorem can be obtained as a special case of Theorem 12.1
of [5].

Observe that with B(E) is denoted the set of all bounded linear operators
on E and with r(A) a spectral radius of an operator A ∈ B(E),

r(A) = lim
n→∞

‖An‖1/n = inf
n∈N

‖An‖1/n.

If r(A) < 1, then the series
∞
∑

n=0

An is absolutely convergent, I−A is invertible

in B(E) and
∞
∑

n=0

An = (I − A)−1.
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Every convergent sequence is a Cauchy sequence, but reverse do not hold.
If any Cauchy sequence in a cone metric space (X, d) is convergent, then X

is a complete cone metric space.
If P is a normal cone, even in the case intP = ∅, then (xn) ⊆ X converges

to x ∈ X if and only if d(xn, x) → θ, n → ∞. Similarly, (xn) ⊆ X is a Cauchy
sequence if and only if d(xn, xm) → θ, n,m → ∞. Also, if limn→∞ xn = x

and limn→∞ yn = y, then d(xn, yn) → d(x, y), n → ∞. Let us emphasise that
this equivalences do not hold if P is a non-normal cone.

We will formulate Perov type theorem on cone metric spaces since we
have recalled all basic definitions.

Theorem 1.7. Let (X, d) be a complete cone metric space with a solid cone
P , d : X ×X 7→ E, f : X 7→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P ,
such that

d(f(x), f(y)) ≤ A (d(x, y)) , x, y ∈ X. (1.2)

Then:

(i) f has a unique fixed point z ∈ X;

(ii) For any x0 ∈ X the sequence xn = f(xn−1), n ∈ N, converges to z and

d(xn, z) ≤ An(I − A)−1(d(x0, x1)), n ∈ N;

(iii) Suppose that g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for
all x ∈ X and some c ∈ P . Then if yn = gn(x0), n ∈ N, we have

d(yn, z) ≤ (I − A)−1(c) + An(I − A)−1(d(x0, x1)), n ∈ N.

In the discussion regarding normal cone metric space, we will only ask
for A to have norm less than 1

K
. Even then we come up with the same con-

clusion: existence, uniqueness and convergence of the iterative sequence.

Let us go back, what was our basic idea-connection between Perov theo-
rem on complete normal cone metric space and Banach theorem on complete
metric space. We recalled all necessary basic definitions and notations and
now we are ready to formulate our main result.

Theorem 1.8. Perov theorem is equivalent the Banach fixed point theorem.
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Also, if ‖A‖ < 1, then I − A is invertible and

‖(I − A)−1‖ ≤
1

1− ‖A‖
.

If X is a Banach space with a cone P and operator A : E 7→ E, then:

(i) A is a positive operator if A(P ) ⊆ P ;

(ii) A is an increasing operator if x ≤ y =⇒ A(x) ≤ A(y), for any x, y ∈ X.

If A ∈ B(E), then (i) and (ii) are equivalent ([6]).
Omitting the boundedness condition, we obtain the following result:

Theorem 2.9. Let (X, d) be complete cone metric space with a solid cone P

and f : X 7→ X a continuous mapping. If there exists an increasing operator
A : E 7→ E such that limn→∞ An(e) = θ, e ∈ E, and, for any x, y ∈ X,

d(f(x), f(y)) ≤ A(d(x, y)), (2.3)

then a mapping f has a unique fixed point in X.

Conditions of Theorem 2.9 could be less strict asking for A to be increas-
ing and tend to zero only on P .

Recent results in cone metric fixed point theory established some relation
between b-metric spaces and normal cone metric spaces.

Definition 2.10. Let X be a nonempty set and s ≥ 1 be a given real number.
A mapping d : X×X → [0,+∞) is said to be a b-metric if for all x, y, z ∈ X

the following conditions are satisfied:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

Definitions of Cauchy and convergent sequence in a b-metric space, as
well as completeness, go analogously as in a metric space.
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One direction is obvious, Banach contraction principle is a Perov type
contraction since metric space is normal cone metric space with the cone
(0,∞) and the contraction inequality is fulfilled.
Otherwise, the idea of the proof is to first show that any cone metric space
is b-metric space and to combine that result with very well known fact that
any cone metric space can be remetrizable in order to get normal constant
K equal to 1.
Only difference between metric paces and b-metric spaces is in the triangle
inequality. For b-metric space we have some constant s ≥ 1 such that

d(x, z) ≤ s[d(x, y) + d(y, z)]

. It is highly intuitive how to define a b-metric on a normal cone space.
Assume (X, d) is a normal cone metric space, then

D(x, y) = ‖d(x, y)‖, x, y ∈ X (1.3)

is a b-metric on X with a same constant as normal cone.
In order to prove this, we need to check all assumptions that hold for

b-metric. It is pretty obvious that D is nonnegative, symmetric and that the
distance is equal to zero only if x = y. Also,

D(x, y) = ‖d(x, y)‖ ≤ K (‖d(x, z)‖+ ‖d(z, y)‖) = K (D(x, z) +D(z, y)) .

Thus, (X,D) is a b-metric space.
If the normal constant K is equal to 1, then (X,D) is a metric space.
But we did not finish the job here since we need to consider what hap-
pens with convergence in relation to the new b-metric. Fortunately, (X, d)
is a complete cone metric space if and only if (X,D) is a complete b-metric
space, limit and convergence are also maintained.
In this way, there is a different approach to the proof of existence and unique-
ness theorem for normal cone metric space through b-metric. You can find
this approach in one of our papers published in AMC. As mentioned, the
normal constant can be observed as equal to 1 since

Theorem 1.9. Let (X, d) be a cone metric space, P ⊆ E a normal cone with
a normal constant K where (E, ‖ · ‖) is a Banach space. Then:

(i) A function ‖ · ‖1 : E 7→ R defined with

‖x‖1 = inf{‖u‖ | x ≤ u}+ inf{‖v‖ | v ≤ x}, x ∈ E,

is a norm on E.
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3 Main results

There were several papers ([3, 11, 15]) studying relations between cone metric
spaces in general, and especially normal cone metric spaces, on one, and
metric spaces on the other side. Many efforts are made in the attempt of
reduction any cone metric space to a metric space. In the case that (X, d) is
a normal cone metric space with a normal constant K, we may introduce a
b-metric as presented in several recent papers.

Let (X, d) be a cone metric space, P a normal cone with a normal constant
K. Define a function D : X ×X 7→ R,

D(x, y) = ‖d(x, y)‖, x, y ∈ X (3.4)

Theorem 3.1. A function D defined in (3.4) is a b-metric on X with a
constant K.

Proof. Let x, y, z ∈ X be arbitrary points. From the definition of norm and
(d1) it easily follows that (b1) holds. D is also a symmetric function since it
directly follows from the symmetry of the norm. From the fact that d is a
metric on X, (d3) and since (X, d) is a normal cone metric space, we have

D(x, y) = ‖d(x, y)‖ ≤ K (‖d(x, z)‖+ ‖d(z, y)‖) = K (D(x, z) +D(z, y)) .

Thus, (X,D) is a b-metric space.

If the normal constant K is equal to 1, then (X,D) is a metric space.
However, if (X, d) is a complete normal cone metric space, {xn} is Cauchy

sequence in (X, d) if and only if lim
n,m→∞

‖d(xn, xm)‖ = 0 and limn→∞ xn = x

if and only if limn→∞ ‖d(xn, x)‖ = 0. Therefore, we may state the following
corollary.

Theorem 3.2. (X, d) is a complete cone metric space, P a normal cone with
a normal constant K and D an b-metric defined as in (3.4) if and only if
(X,D) is a complete b-metric space.

We will give another proof of the generalization of Perov fixed point the-
orem in the setting of normal cone metric space.
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(ii) Norms ‖ · ‖ and ‖ · ‖1 are equivalent norms on X.

(iii) If we observe P as a cone in Banach space (E, ‖ · ‖1), then (X, d) is a
normal cone metric space with a normal constant equal to 1.

The equivalence of the norms allows us to determine the relation between
‖A‖ and ‖A‖1.

Note that the setting has changed, first from the normal cone metric
space to b-metric space based on the remetrization, and afterwards from b-
metric space to metric space, thanks to the previous theorem. Completeness,
Cauchyness and convergence are kept all through those metric and norm
changes.
Hence, we got the desired result, Perov theorem on normal cone metric space
is equivalent to well known Banach metric space.But, that does not mean
that the fixed point theorem of Perov type on a normal cone metric space is
worthless, on contrary. As Precup mentioned, the convergence rate is much
faster if we apply Perov theorem instead of Banach theorem.
As an example, we can observe generalized metric space in the sense of Perov
which is a normal cone metric space with a normal constant K = 1.

Example 1. Define a mapping f : R
2 7→ R

2 with f(x) = (x1

2
+ x2,

x2

2
),

x = (x1, x2) ∈ R
2. Let

A =

[

1

2
1

0 1

2

]

,

then limn→∞ An = Θ2 and

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ R
2.

Since ‖A‖ = 1, D(f(x), f(y)) ≤ D(x, y) and if x = (0, 0), y = (0, 1), it
follows that f is not a contraction in (R2, D), but it is a Perov contraction
and based on Perov theorem it possesses the unique fixed point (0, 0).

We can also formulate very important corollary, if f is a mapping on
a complete metric space such that fn is a Perov type contraction, than f

possesses a unique fixed point.
On the other hand, Perov theorem on solid (non-normal)cone metric space
with the assumption that r(A) < 1 could not be derived directly from Banach
theorem. You can try to prove it on the following example:

Aleksandra Kapesic
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Theorem 3.3. Let (X, d) be a complete cone metric space, P a normal cone
with a normal constant K and f : X 7→ X a self-mapping. If there exists an
operator A ∈ B(E) such that K‖A‖ < 1, for all x, y ∈ X,

d(f(x), f(y)) ≤ A(d(x, y)), (3.5)

then f has a unique fixed point in X.

Proof. From the condition (3.5) and the fact that P is a normal cone, it
follows

D(fx, fy) = ‖d(f(x), f(y))‖ ≤ K‖A(d(x, y))‖ ≤ K‖A‖D(x, y), x, y ∈ X,

and f is a contraction in b-metric space and the existence of an unique fixed
point follows by the generalization of Banach fixed point theorem in b-metric
space presented in [7].

Observe that we can obtain the same result from Banach fixed point
theorem (on complete metric spaces) by renorming, as presented in [13].

Theorem 3.4. Let (X, d) be a cone metric space, P ⊆ E a normal cone with
a normal constant K where (E, ‖ · ‖) is a Banach space. Then:

(i) A function ‖ · ‖1 : E 7→ R defined with

‖x‖1 = inf{‖u‖ | x ≤ u}+ inf{‖v‖ | v ≤ x}, x ∈ E,

is a norm on E.

(ii) Norms ‖ · ‖ and ‖ · ‖1 are equivalent norms on X.

(iii) If we observe P as a cone in Banach space (E, ‖ · ‖1), then (X, d) is a
normal cone metric space with a normal constant equal to 1.

The equivalence of the norms allows us to determine the relation between
‖A‖ and ‖A‖1.

Remark 3.5. Based on the previously made observations regarding renorminiza-
tion of a normal cone with a normal constant K and Theorem 3.3, we may
conclude that existence of the unique fixed point Perov type contractions (in-
cluding extended and more general contractive conditions) on normal cone
metric spaces could be derived from analogous results on metric spaces.

8

Example 2. Let c0 be the set containing all sequences of real numbers con-
vergent to zero equipped with supremum norm ‖ · ‖∞ and define A : E 7→ E

with

A(x) = A(x1, x2, x3, . . . , xn, . . .) = (0, x3,
x4

2
, . . . ,

xn+1

2
, . . .), x = (xn) ∈ c0.

The requirement that A contains only positive entries, as stated in Perov
theorem, could be removed thanks to the normality of the defined cone in
generalized metric space. This could be explained also by the fact that,
from the definition of matrix norm, only absolute value of matrix entries has
impact on the norm value. So Perov type theorems are applicable, regardless
of the positivity of matrix elements, if absolute value of all entries are less
than 1.

The question that raises is why do we do this? What is the impact of
these types of results? Perov theorem has a wide range of application and es-
timations obtained by Perov theorem and generalized metric are better than
by using usual metric spaces and some well-known theorems. In comparison
with Schauder, Krasnoselskii, Leray-Schauder and Banach theorem, Perov
theorem has best results. We will discuss here only on Banach and Perov
theorem and compare the convergence rate in those two cases.

Example 3. If (X, d) is a complete metric space and Ti : X × X 7→ X,
i = 1, 2, solution of a system

T1(x, y) = x

T2(x, y) = y, (1.4)

is a fixed point of a mapping T : X ×X 7→ X ×X defined with

T (x, y) = (T1(x, y), T2(x, y)) , x, y ∈ X.

To apply Banach theorem, T should be a contraction on X ×X. Let D be
a metric on X ×X induced by d, then

D(F (x, y), F (u, v)) ≤ qD((x, y), (u, v)), (x, y), (u, v) ∈ X ×X,

for some q ∈ (0, 1).
If D((x, y), (u, v)) = d(x, y) + d(u, v), (x, y), (u, v) ∈ X ×X, then

d(T1(x, y), T1(u, v)) + d(T2(x, y), T2(u, v)) ≤ q(d(x, y) + d(u, v)), (1.5)
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Focusing on just first two statements of Perov theorem, we may state the
following result:

Theorem 3.6. Perov theorem is a consequence of a Banach fixed point the-
orem.

Proof. Notice that generalized metric space introduced by Perov is a type of
normal cone metric space.
If P = {x = (x1, x2, . . . , xn) ∈ R

n | xi ≥ 0, i = 1, n}, then P evidently deter-
mines a cone in a Banach space Rn with supremum norm, ‖x‖ = max

i=1n
|xi|, and

x ≤ y if and only if xi ≤ yi, i = 1, n. Since θ ≤ x ≤ y, for θ = (0, 0, . . . , 0),
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), implies 0 ≤ xi ≤ yi, i = 1, n,
then ‖x‖ = max

i=1,n
|xi| ≤ max

i=1,n
|yi| = ‖y‖ and P is a normal cone with a normal

constant K = 1.
By taking into the account results of Theorem 3.1, it follows that for any gen-
eralized metric space (X, d) in the sense of Perov, the appropriate b-metric
space (X,D) is a metric space.
Assume that the requirements of Perov theorem are fulfilled for some A ∈
Mm,m(R

+) such that An → Θm, as n → ∞. Since a matrix A converges to
the zero matrix, then ‖An‖ → 0, n → ∞. Choose n0 ∈ N such that ‖An‖ < 1
for any n ≥ n0. For such n,

d(fnx, fny) ≤ An(d(x, y)), x, y ∈ R
m,

and
D(fnx, fny) ≤ ‖An‖D(x, y), x, y ∈ R

m. (3.6)

If we apply Banach contraction principle for fn and q = ‖An‖ < 1, fn has a
unique fixed point z in X. Since fn(fz) = fz, it must be fz = z. If fu = u

for some u ∈ X, then fnu = u, so u = z.
Hence, Perov theorem is a direct consequence of Banach contraction princi-
ple.
It is easy to observe that the iterative sequence {xn} is a Cauchy sequence,
thus convergent, and since {fnk(x)}k∈N converges to z by Banach fixed point
theorem, (ii) holds.

Remark 3.7. On the other hand, if n = 1, then generalized metric space
is a metric space and a positive matrix A = [q] tends to zero if and only if
q < 1. Thus, Banach contraction principle is a Perov fixed point theorem

9

for any (x, y), (u, v) ∈ X ×X, because of

d(Ti(x, y), Ti(u, v)) ≤
q

2
(d(x, y) + d(u, v)), i = 1, 2, (1.6)

holds for any (x, y), (u, v) ∈ X ×X.
On the other hand, if Perov theorem would be applied, T1 and T2 should be
such that

d(Ti(x, y), Ti(u, v)) ≤ aid(x, u) + bid(y, v), (x, y), (u, v) ∈ X ×X, i = 1, 2,

for some nonnegative ai, bi ≥ 0, i = 1, 2, and a matrix

A =

[

a1 b1
a2 b2

]

convergent to zero, so

a1 + b2 +
√

−2a1b2 + 4a2b1 + a12 + b2
2 < 2.

If we try to use Banach fixed point theorem in various norms, then max{a1, a2},
max{b1, b2} should be less than 1

2
, or max{a1, a2}+max{b1, b2} < 1. Anyway,

this result is more strict than r(A) < 1 since

A =

[

2

3

1

9
1

9

2

3

]

has spectral radius r(A) = 7

9
less than 1, but previous estimations regarding

the entries are not valid.

Perov fixed point theorem found application in solving various systems
of differential equations. But, in some cases it is possible to replace it with
the corollary regarding the fn. I will just show you this example, we will
not go through it, but if you need some clarification, we can discuss on it
afterwards.

Example 4. Let (Xi, di), i = 1,m be some complete metric spaces and define

a generalized metric d on their Cartesian product X =
m
∏

i=1

Xi and (Y, τ) be a

Aleksandra Kapesic
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for n = 1. However, remarks regarding distance presented in (iii) and (iv)
(easily observed if we take g = f) could not be derived directly from Banach
contraction principle since the inequality (3.6) do not imply (iii).

Example 1. Define a mapping f : R
2 7→ R

2 with f(x) = (x1

2
+ x2,

x2

2
),

x = (x1, x2) ∈ R
2. Let

A =

[

1
2

1
0 1

2

]

,

then limn→∞ An = Θ2 and

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ R
2.

Since ‖A‖ = 1, D(f(x), f(y)) ≤ D(x, y) and if x = (0, 0), y = (0, 1), it
follows that f is not a contraction in (R2, D), but it is a Perov contraction
and based on Perov theorem it possesses a unique fixed point (0, 0).

From the proof of Theorem 3.6 and the previous example, we may notice
correlation between Perov theorem and well-known consequence of Banach
theorem.

corollary 3.1. Let (X, d) be a complete metric space, f : X 7→ X a mapping.
If

d(fn(x), fn(y)) ≤ qd(x, y), x, y ∈ X,

for some n ∈ N and q ∈ [0, 1), then f has a unique fixed point in X.

The following example shows that Perov type theorems including require-
ment r(A) < 1 could not be derived directly from Banach theorem.

Example 2. Let c0 be the set containing all sequences of real numbers con-
vergent to zero equipped with supremum norm ‖ · ‖∞ and define A : E 7→ E

with

A(x) = A(x1, x2, x3, . . . , xn, . . .) = (0, x3,
x4

2
, . . . ,

xn+1

2
, . . .), x = {xn} ∈ c0.

Operator A is linear on Banach space (c0, ‖ · ‖∞) and also bounded since
‖Ax‖∞ ≤ ‖x‖∞. By choosing e3 = (0, 0, 1, 0, . . . , 0, . . .) ∈ c0, it follows
‖A‖ = 1 by taking into account previous inequality.
For any m ∈ N,

Am(x) = Am(x1, x2, x3, . . .) = (0,
xm+2

2m−1
,
xm+3

2m
, . . .), x = {xn} ∈ c0,

References 10

Hausdorff topological space.Of f = (f1, f2) : X×Y 7→ X×Y is an operator,
consider the system of functional-differential equations:

x(t) =

∫

1

0

K(t, s, x(s), y(s))ds+ g(t), t ∈ [0, 1],

y(t) =

∫

1

0

H(t, s, x(s), y(s), y(y(s)))ds, t ∈ [0, 1],

where x ∈ X and y ∈ Y , continuous mappingsK ∈ C ([0, 1]× [0, 1]× R
m × [0, 1],Rm),

g ∈ C ([0, 1],Rm) and H ∈ C ([0, 1]× [0, 1]× R
m × [0, 1]× [0, 1],R),

Under assumptions that codomain of H is contained in [0, 1], that H

is a first coordinate Lipschitzian mapping with a constant L and K is a
Perov generalized contraction, this system has at least one solution in X×Y

for X = C([0, 1],Rm) =
m
∏

i=1

Xi, Xi = C[0, 1], i = 1,m and Y set of all

Lipschitzian mappings on C([0, 1], [0, 1]) with a constant L. Observe that we
could not use Banach theorem instead of Perov to obtain this conclusion due
to the contractive condition for K.

In conclusion, we have shown that Perov theorem on normal cone metric
space is equivalent to Banach (on solid not), but still its applications are of
huge significance in the area of differential, operator and integral equations.
What could be done in the future? Maybe the convergence rate should be
compared with more details for the normal cone metric space, solid and non-
normal cone metric space and metric space. Also it is possible to discuss on
novelty of Perov type theorem on solid cone metric space in comparison with
some other well-known theorems in the metric fixed point theory.
There is long list of references on this topic and if you are interested in the
research in this area, I can point out to you the most important ones.
Thank you for your attention! Let me know if you have any questions.
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therefore, observing em+2 ∈ c0 with all zeros except one on (m+2)-nd place
(i.e., (em+2)n = δn,m+2, n ∈ N), we obtain ‖Am‖ = 1

2m−1 . Spectral radius
of A is 1

2
, A is a positive operator, so all the conditions of Theorem 2.7 are

satisfied since
d(A(x), A(y)) ≤ A(d(x, y)), x, t ∈ c0,

where ≤ is usual partial ordering on c0, i.e. xn ≤ yn, n ∈ N, determining a
normal cone and d : c0× c0 7→ c0 defined by d(x, y)(n) = |x(n)−y(n)|, n ∈ N

is a cone metric.
On the other hand, since normal constant and ‖A‖ are equal to 1, norm
inequality implies

D(A(x), A(y)) ≤ D(x, y),

thus Banach theorem is not applicable (let x = θ and y = e3).

We may also assume that K = 1 due to the renormization and the invari-
ance of spectral radius in renormized space. It is important to notice that
r(A) < 1 implies ‖An‖ < 1 for some n ∈ N, so instead of Banach theorem,
we should consider Consequence 3.1.

If the inequality (2.2) holds, then, since A is an increasing operator,

d(fn(x), fn(y)) ≤ An(d(x, y)),

thus,
D(fn(x), fn(y)) ≤ ‖An‖(d(x, y)),

and existence and uniqueness of a fixed point for a mapping f follows directly
from Consequence 3.1.

In Example 1 f 3 is a contraction in induced metric space, and in Example
2 f 2.

As presented in [6], the requirement that A contains only positive entries,
as stated in Perov theorem, could be removed thanks to the normality of
the defined cone in generalized metric space. This could be explained also
by the fact that, from the definition of matrix norm, only absolute value of
matrix entries has impact on the norm value. So Perov type theorems are
applicable, regardless of the positivity of matrix elements, if all entries are
less than 1.

Perov theorem has a wide range of application and estimations obtained
by Perov theorem and generalized metric are better than by using usual
metric spaces and some well-known theorems. In [24] coupled fixed point
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problem on Banach space was analyzed and, implementation of various metric
and vector-valued metric in the sense of Perov, lead to the conclusion that
results obtained by Perov theorem are better and unify other results. The
comparison is made for Schauder, Krasnoselskii, Leray-Schauder and Perov
theorem. We will discuss results obtained by Banach fixed point theorem
and compare them in the case of metric space.

Example 3. If (X, d) is a complete metric space and Ti : X × X 7→ X,
i = 1, 2, solution of a system

T1(x, y) = x

T2(x, y) = y, (3.7)

is a fixed point of a mapping T : X ×X 7→ X ×X defined with

T (x, y) = (T1(x, y), T2(x, y)) , x, y ∈ X.

To apply Banach theorem, T should be a contraction on X ×X. Let D be
a metric on X ×X induced by d, then

D(F (x, y), F (u, v)) ≤ qD((x, y), (u, v)), (x, y), (u, v) ∈ X ×X,

for some q ∈ (0, 1).
If D((x, y), (u, v)) = d(x, y) + d(u, v), (x, y), (u, v) ∈ X ×X, then

d(T1(x, y), T1(u, v)) + d(T2(x, y), T2(u, v)) ≤ q(d(x, y) + d(u, v)), (3.8)

for any (x, y), (u, v) ∈ X ×X, because of

d(Ti(x, y), Ti(u, v)) ≤
q

2
(d(x, y) + d(u, v)), i = 1, 2, (3.9)

holds for any (x, y), (u, v) ∈ X ×X.
On the other hand, if Perov theorem would be applied, T1 and T2 should be
such that

d(Ti(x, y), Ti(u, v)) ≤ aid(x, u) + bid(y, v), (x, y), (u, v) ∈ X ×X, i = 1, 2,

for some nonnegative ai, bi ≥ 0, i = 1, 2, and a matrix

A =

[

a1 b1
a2 b2

]
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convergent to zero. This means that r(A) < 1 or, equivalently,

a1 + b2 +
√

−2a1b2 + 4a2b1 + a12 + b2
2 < 2.

Considering (3.9), max{a1, a2}, max{b1, b2} should be less than 1
2
, or in view

of (3.8), max{a1, a2} + max{b1, b2} < 1. Anyway, this result is more strict
than r(A) < 1.

If

A =

[

2
3

1
9

1
9

2
3

]

,

then r(A) = 7
9
, but neither of the inequalities (3.8) and (3.9) is satisfied.

Perov fixed point theorem found application in solving various systems of
differential equations. But, in some cases like [28], it is possible to replace it
with the Consequence 3.1.

Example 4. Let (Xi, di), i = 1,m be some complete metric spaces and

define a generalized metric d on their Cartesian product X =
m
∏

i=1

Xi with

d(x, y) =











d1(x1, y1)
d2(x2, y2)

...
dm(xm, ym)











,

for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ X. As previously discussed, (X, d)
is, as generalized metric space, also a normal cone metric space with a normal
constant K = 1.
Let (Y, τ) be a Hausdorff topological space and f = (f1, f2) : X×Y 7→ X×Y

an operator.Theorem 2.1 of [28] states that if f is continuous, (Y, τ) has a

fixed point property (i.e., every continuous mapping g : Y 7→ Y has a fixed
point) and there exists a matrix S ∈ Rm×m convergent to zero matrix such
that

d(f1(u, y), f1(v, y)) ≤ Sd(u, v), u, v ∈ X, y ∈ Y, (3.10)

then f has a fixed point. Uniqueness is not guaranteed because of contractive
condition based on the first coordinate.
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Instead of using Perov theorem, as presented in [28], observe that, since
Sn → Θ, n → ∞, then there exists some n ∈ N such that ‖Sn‖ = q < 1,
where assumed norm is the supremum norm. For such chosen n, (3.10)
implies

d(fn
1 (u, y), f

n
1 (v, y)) ≤ Sn (d(u, v)) , u, v ∈ X, y ∈ Y,

so
d∞(fn

1 (u, y), f
n
1 (v, y)) ≤ qd∞(u, v), u, v ∈ X, y ∈ Y,

where d∞ : X ×X 7→ R is a maximum metric defined with

d(u, v) = max
i=1,m

di(ui, vi), u, v ∈ X.

Hence, Consequence 3.1 guarantees unique fixed point x∗ of a mapping
fn
1 (·, y) : X 7→ X for any y ∈ Y . As in the proof of Theorem 3.6, x∗ is
also unique fixed point of f1(·, y) : X 7→ X for a fixed y ∈ Y . The rest of the
proof would follow analogously as in [28].
As stated in this paper, Y could be any compact convex subset of a Banach
space. This results is applied in solving systems of functional-differential
equations such as:

x(t) =

∫ 1

0

K(t, s, x(s), y(s))ds+ g(t), t ∈ [0, 1],

y(t) =

∫ 1

0

H(t, s, x(s), y(s), y(y(s)))ds, t ∈ [0, 1],

where x ∈ X and y ∈ Y , continuous mappingsK ∈ C ([0, 1]× [0, 1]× R
m × [0, 1],Rm),

g ∈ C ([0, 1],Rm) and H ∈ C ([0, 1]× [0, 1]× R
m × [0, 1]× [0, 1],R),

Under assumptions that codomain of H is contained in [0, 1], that H

is a first coordinate Lipschitzian mapping with a constant L and K is a
Perov generalized contraction, this system has at least one solution in X×Y

for X = C([0, 1],Rm) =
m
∏

i=1

Xi, Xi = C[0, 1], i = 1,m and Y set of all

Lipschitzian mappings on C([0, 1], [0, 1]) with a constant L. Observe that we
could not use Banach theorem instead of Perov to obtain this conclusion due
to the contractive condition for K.
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