Susana Irene Díaz Rodríguez

Full professor of Artificial Intelligence

Universidad de Oviedo

Machine learning & Applications

The term *machine learning* refers to the automated detection of meaningful patterns in data

What learning is

Res .

ł

When do we need Machine Learning?

•Tasks Performed by Humans: Learn from experience

Enviar comentarios

•Tasks beyond human capacities

Data Mining

Data	Minin	g	CINTERPRETATION & EVALUATION						
		¢	LEARNING			Knowledge			
	Outlook	Temp.	Humidity	Wind	Play	Models			
	Sunny	Hot	High	Weak	No				
	Sunny	Hot	High	Strong	No				
	Overcast	Hot	High	Weak	Yes				
	Rain	Mild	High	Weak	Yes				
	Rain	Cool	Normal	Weak	Yes				
	Rain	Cool	Normal	Strong	No				
	Overcast	Cool	Normal	Strong	Yes				
	Sunny	Mild	High	Weak	No				
	Sunny	Cool	Normal	Weak	Yes				
	Rain	Mild	Normal	Weak	Yes				
	Sunny	Mild	Normal	Strong	Yes				
	Overcast	Mild	High	Strong	Yes				
po to	Overcast	Hot	Normal	Weak	Yes				
	Rain	Mild	High	Strong	No				

Taxonomy

Learn a function mapping inputs to outputs using labeled training data (you get instances/examples with both inputs and ground truth output)

Learn something about just data without any labels (harder!), for example clustering instances that are "similar"

Supervised ML

- Inpu tdata
- Input to the function(features/attributes of data)
- The function or model you choose
- The optimization algorithm you use to explore space of functions

Problem statement

- Set of possible instances \mathcal{X}
- Set of possible labels ${\mathcal Y}$

D

- Unknown target function $f: \mathcal{X} \to \mathcal{Y}$
- Set of function hypotheses $H = \{h \mid h : \mathcal{X} \to \mathcal{Y}\}$

Input: Training examples of unknown target function f $\{\langle \boldsymbol{x}_i, y_i \rangle\}_{i=1}^n = \{\langle \boldsymbol{x}_1, y_1 \rangle, \dots, \langle \boldsymbol{x}_n, y_n \rangle\}$

Output: Hypothesis $h \in H$ that best approximates f

Which one is the best solution?

- $h^* = argmax_{\{h \in H\}}[P(h|Data)]$
- Select the simplest solution (Ockham principle)

Different paradigms

Decision Trees

- Each internal node is a test on one attribute
- Each leaf node: Prediction

Do we play tennis ?

The prediction is :

Outlook:Sunny, Temperature: Hot, Humidity: High, Wind: Strong

K-NN

Maybe the simplest methodInstance based learning

Require 3 inputs

- 1. Training set
- 2. A distance
- *3. k*, the number of neighbors

K-NN

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

$$\begin{split} \min_{w,b} \frac{1}{2} \|w\|^2, \text{ subject to } y_i(wx_i + b) \geq 1 \\ \mathbf{x}_2 \\ w \cdot \mathbf{x} + b \geq 1 \\ \mathbf{x}_2 \\ u \cdot \mathbf{x} + b \geq 1 \\ \mathbf{x}_2 \\ \mathbf$$

$$X_1 = x_1^2$$
$$X_2 = x_2^2$$
$$X_3 = \sqrt{2}x_1x_2$$

$$\begin{split} \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2 + C\sum_{i=1}^n \xi_i, \\ \text{subject to } y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 - \xi_i \end{split} \mathbf{x}_2 \qquad \mathbf{w} \cdot \mathbf{x} + b \ge 1 \\ L(\mathbf{w}, b, \alpha) &= \frac{1}{2} \|\mathbf{w}\|^2 + C\sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \{y_i(\mathbf{w}\mathbf{x}_i + b) - 1\} \\ 0 \le \alpha_i \le C \quad \forall i=1, \dots, n \end{aligned} \mathbf{w} \cdot \mathbf{x} + b \ge 1 \\ \mathbf{w} \cdot \mathbf{x} + b \le 1 \\ \mathbf{w} \cdot \mathbf{w} + b \le 1 \\ \mathbf{w} \cdot \mathbf{w$$

$$g(\mathbf{x}) = \mathbf{w}\mathbf{x} + b = \sum_{i \in VS} \alpha_i y_i \mathbf{x}_i \mathbf{x} + b$$

Polynomial (degree d)

$$K(\boldsymbol{x},\boldsymbol{y}) = (\boldsymbol{x}\boldsymbol{y}+1)^d$$

Radial (width σ)

$$K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x}-\mathbf{y}\|^2/(2\sigma^2)}$$

Sigmoidal (parameters κ and θ)

$$K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}\mathbf{y} + \theta)$$

Polynomial kernel

degree 1

degree 6

Radial Kernel

 σ low, linear SVM . σ high, overfitting

Neurons

Artificial Neuron

W=Weight

Neural networks

Perceptron

• Linear treshold unit (LTU)

Perceptron Learning Rule

 $w_{i} = w_{i} + \Delta w_{i}$ $\Delta w_{i} = \eta (t - o) x_{i}$ $\eta \text{ learning rate}$

If the output is incorrect (t≠o) the weights w_i are changed such that the output of the perceptron for the new weights is *closer* to t.

- The algorithm converges to the correct classification
 - if the training data is linearly separable
 - \bullet and η is sufficiently small

Decision Surface of a Perceptron

Linearly separable

Non-Linearly separable

- Perceptron is able to represent some useful functions
- AND(x₁,x₂) choose weights w₀=-1.5, w₁=1, w₂=1
- But functions that are not linearly separable (e.g. XOR) are not representable

Multi layer netwoks

NN for Machine Learning

1. Given training data: 3. Define goal:

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i),oldsymbol{y}_i)$$

- 2. Choose:
 - Decision function

4. Train

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

$$\mathcal{L}(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}^{d}$$

Multi layer networks

- Transforms neuron's input into output.
- Features of activation functions:
 - A squashing effect is required
 - Prevents accelerating growth of activation levels through the network.
 - Simple and easy to calculate

Multi layer networks

The hard-limiting threshold function

- Corresponds to the biological paradigm
 - either fires or not
- Sigmoid functions ('S'-shaped curves)
 - The logistic function
 - The hyperbolic tangent (symmetrical)

Backpropagation

- Can theoretically perform "any" input-output mapping;
- Can learn to solve linearly inseparable problems.

Gradient descent

 $\phi(x) = \frac{1}{1 + \rho^{-ax}}$

Backpropagation Algorithm

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - For each training example <(x₁,...x_n),y> Do
 - Input the instance $(x_1, ..., x_n)$ to the network and compute the network outputs o_k
 - For each output unit k

• For each hidden unit h

•
$$\delta_h = o_h (1 - o_h) \sum_k w_{h,k} \delta_k$$

- For each network weight w_{,j} Do
- $w_{i,j}=w_{i,j}+\Delta w_{i,j}$ where

$$\Delta w_{i,j}$$
= $\eta \delta_j x_{i,j}$

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- 1. # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)

 $E(\mathbf{w}) = \frac{1}{2} \sum_{d} \sum_{k} (y_{kd} - y'_{kd})^2$

4. How to update the weight

$$g(x) = \frac{1}{1 - e^{-x}}$$
$$g(x) = x$$

$$g(x) = \begin{cases} 1 \text{ if } wx > 0 \\ -1 \text{ otherwise} \end{cases}$$

Gradient descent

Which surfaces can we learn?

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes	
Single-Layer	Half Plane Bounded By Hyperplane	ABBA	BA		
Two-Layer	Convex Open Or Closed Regions	ABBA	BA		
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	ABBA	B		

Expressive Capabilities of ANN

- With one hidden layer, it is possible to represent any boolean function or any continuous function
- With two hidden layers, it is possible to represent non continuous functions
- More complex problems... Deep learning

Overfitting!!!

- With sufficient nodes can classify any training set exactly
- May have poor generalisation ability.

Evaluation

• How do the models generalize??

Training/test

- 1 data split
- Tipically 80% for training. 20% for testing
- OK if we have enough dat
- Otherwise, be careful with bias

А	Training	Test					
Single Dataset							

Bootstrap

Cross validation

Meta Validation

- What to do if *h* functions require any parameter?
- We test several parameters and select the best
- How?

Evaluation

			Prediction					
ار			C _P	C _N				
	Tru	C _P	TP : True positive	FN : False negative				
	ıth	C _N	FP : False positive	TN : True negative				

 $Accuracy = A = \frac{TP + TN}{TP + TN + FP + FN}$ $Precision = P = \frac{TP}{TP + FP}$ $Cobertura = Recall = R = \frac{TP}{TP + FN}$ $F = \frac{2 * P * R}{P + R} = \frac{2 * TP}{2 * TP + FP + FN}$

Evaluation

Applications

1

P

0

Automatic image labelling

airplane	1	14	-	X	*	**	0	-1		Sel.
automobile					ST.	No.			-	*
bird	S	5	to			-	1		12	4
cat	1		4	50				Å,	No.	2
deer	6	48	X	RA		Y	Y	1	-	5
dog	12	1	-		1			TA:	1	1ge
frog		19	-		27		and a	5		5
horse	- Mar	T.	P	2	P	TAL	-3	24	6	N.
ship	-		11	-	144		1	10	1	
truck			1					(Fr		AL.

Object recognition

Example of Object Detection With Faster R-CNN on the MS COCO Dataset

Image reconstruction

Style transfer

Medical Diagnosis

- 57/16
- Treatment recomendation
- Recognition of cancerous cells
- Identification of features related to a disease

References

Tom Mitchell. *Machine Learning*. McGraw-Hill

Ethem Alpaydin. *Introduction to machine learning*. The MIT Press

Christopher Bishop. *Pattern recognition and machine learning*. Springer

