Susana Irene Díaz Rodríguez

Full professor of Artificial Intelligence

Universidad de Oviedo

Machine

 learning \& Applications

The term machine learning refers to the automated detection of meaningful patterns in data

When do we need Machine Learning?

-Tasks Performed by Humans: Learn from experience

-Tasks beyond human capacities

Data Mining

Data Mining

Taxonomy

Learn a function mapping inputs to outputs using labeled training data (you get instances/examples with both inputs and ground truth output)

Learn something about just data without any labels (harder!), for example clustering instances that are "similar"

Supervised ML

Inpu tdata
Input to the function(features/attributes of data) The function or model you choose
The optimization algorithm you use to explore space of functions

Problem statement

- Set of possible instances \mathcal{X}
- Set of possible labels \mathcal{Y}
- Unknown target function $f: \mathcal{X} \rightarrow \mathcal{Y}$
- Set of function hypotheses $H=\{h \mid h: \mathcal{X} \rightarrow \mathcal{Y}\}$

Input: Training examples of unknown target function f

$$
\left\{\left\langle\boldsymbol{x}_{i}, y_{i}\right\rangle\right\}_{i=1}^{n}=\left\{\left\langle\boldsymbol{x}_{1}, y_{1}\right\rangle, \ldots,\left\langle\boldsymbol{x}_{n}, y_{n}\right\rangle\right\}
$$

Output: Hypothesis $h \in H$ that best approximates f

Which one is the best solution?

- $h^{*}=\operatorname{argmax}_{\{h \in H\}}[P(h \mid$ Data $)]$
- Select the simplest solution (Ockham principle)

Different paradigms

Decision Trees

Do we play tennis ?

The prediction is:

- \{Outlook:Sunny, Temperature: Hot, Humidity: High, Wind: Strong\}

K-NN

Maybe the simplest method \square Instance based learning

Require 3 inputs

1. Training set
2. A distance
3. k, the number of neighbors

K-NN

Support Vector Machines

$$
\min _{\boldsymbol{w}, b} \frac{1}{2}\|\boldsymbol{w}\|^{2}, \text { subject to } y_{i}\left(\boldsymbol{w} \boldsymbol{x}_{\boldsymbol{i}}+b\right) \geq 1
$$

$$
x_{2}
$$

$$
\boldsymbol{w} \cdot \boldsymbol{x}+b \geq 1
$$

$$
L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i=1}^{n} \boldsymbol{\alpha}_{i}\left\{y_{i}\left(\boldsymbol{w} \boldsymbol{x}_{\boldsymbol{i}}+b\right)-1\right\}
$$

$$
\alpha_{i} \geq 0 \forall i=1, \ldots ., \mathrm{n}
$$

$$
\max _{\alpha} L_{d}(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}
$$

Subject to

$$
\alpha_{i} \geq 0 \forall i, \quad 0=\sum_{i=1}^{n} \alpha_{i} y_{i}
$$

Support Vector Machines

Support Vector Machines

$$
M=A
$$

$$
\begin{aligned}
& X_{1}=x_{1}^{2} \\
& X_{2}=x_{2}^{2} \\
& X_{3}=\sqrt{2} x_{1} x_{2}
\end{aligned}
$$

Support Vector Machines

Support Vector Machines

$$
\min _{\boldsymbol{w}, b} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

$$
\text { subject to } y_{i}\left(\boldsymbol{w} \boldsymbol{x}_{\boldsymbol{i}}+b\right) \geq 1-\xi_{i}
$$

$$
x_{2}
$$

$$
w \cdot \boldsymbol{x}+b \geq 1
$$

$$
L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left\{y_{i}\left(w x_{i}+b\right)-1\right\}
$$

$$
0 \leq \alpha_{i} \leq C \quad \forall i=1, \ldots ., \mathrm{n}
$$

$$
\max _{\alpha} L_{d}(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{K}\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{j}}\right)
$$

Subject to

$$
0 \leq \alpha_{i} \leq C \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

$$
\boldsymbol{w} \cdot \boldsymbol{x}+b \leq{ }^{-1} \mathbf{x}_{1}
$$

Support Vector Machines

$$
w \cdot \boldsymbol{x}+b \geq 1
$$

Support Vector Machines

■ Polynomial (degree d)

$$
K(x, y)=(x y+1)^{d}
$$

■Radial (width σ)

$$
K(\boldsymbol{x}, \boldsymbol{y})=e^{-\|\boldsymbol{x}-\boldsymbol{y}\|^{2} /\left(2 \sigma^{2}\right)}
$$

■Sigmoidal (parameters κ and θ)

$$
K(x, y)=\tanh (\kappa x y+\theta)
$$

Polynomial kernel

Radial Kernel

Radial $\sigma=1 \mathrm{e}-5$

Radial $\sigma=0.1$

Radial $\sigma=2$
σ low, linear SVM . σ high, overfitting

Neurons

Artificial Neuron

W=Weight

Neural networks

Perceptron

- Linear treshold unit (LTU)

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}+\Delta \mathrm{w}_{\mathrm{i}} \\
& \Delta \mathrm{w}_{\mathrm{i}}=\eta(\mathrm{t}-\mathrm{o}) \mathrm{x}_{\mathrm{i}} \\
& \eta \text { learning rate }
\end{aligned}
$$

Perceptron Learning Rule

- If the output is incorrect $(t \neq 0)$ the weights w_{i} are changed such that the output of the perceptron for the new weights is closer to t.
- The algorithm converges to the correct classification
- if the training data is linearly separable
- and η is sufficiently small

Decision Surface of a Perceptron

Linearly separable

Non-Linearly separable

- Perceptron is able to represent some useful functions
- $\operatorname{AND}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ choose weights $\mathrm{w}_{0}=-1.5, \mathrm{w}_{1}=1, \mathrm{w}_{2}=1$
- But functions that are not linearly separable (e.g. XOR) are not representable

Multi layer netwoks

NN for Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

2. Choose:

- Decision function

4. Train
$\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$

- Loss function

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

$\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}$

Multi layer networks

- Transforms neuron's input into output.
- Features of activation functions:
- A squashing effect is required
- Prevents accelerating growth of activation levels through the network.
- Simple and easy to calculate

(a) Step function
(b) Sign function
(c) Sigmoid function

Multi layer networks

The hard-limiting threshold function

- Corresponds to the biological paradigm
- either fires or not

Sigmoid functions ('S'-shaped curves)

- The logistic function

$$
\phi(x)=\frac{1}{1+e^{-a x}}
$$

- The hyperbolic tangent (symmetrical)

Backpropagation

- Can theoretically perform "any" input-output mapping;
- Can learn to solve linearly inseparable problems.

Gradient descent

Backpropagation Algorithm

- Initialize each w_{i} to some small random value
- Until the termination condition is met, Do
- For each training example <($\left.\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)$, $\mathrm{y}>$ Do
- Input the instance $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ to the network and compute the network outputs o_{k}
- For each output unit k
- $\delta_{k}=o_{k}\left(1-o_{k}\right)\left(t_{k}-o_{k}\right)$
- For each hidden unit h
- $\delta_{\mathrm{h}}=\mathrm{o}_{\mathrm{h}}\left(1-\mathrm{o}_{\mathrm{h}}\right) \sum_{\mathrm{k}} \mathrm{w}_{\mathrm{h}, \mathrm{k}} \delta_{\mathrm{k}}$
- For each network weight w_{j} Do
- $\mathrm{w}_{\mathrm{i}, \mathrm{j}}=\mathrm{w}_{\mathrm{i}, \mathrm{j}}+\Delta \mathrm{w}_{\mathrm{i}, \mathrm{j}}$ where
$\Delta w_{i, j}=\eta \delta_{j} x_{i, j}$

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

1. \# of hidden layers (depth)
2. \# of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. How to update the weight

$$
\begin{aligned}
& g(x)=\frac{1}{1-e^{-x}} \\
& g(x)=x
\end{aligned}
$$

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{d} \sum_{k}\left(y_{k d}-y_{k d}^{\prime}\right)^{2}
$$

$$
g(x)=\left\{\begin{array}{c}
1 \text { if } \boldsymbol{w} \boldsymbol{x}>0 \\
-1 \text { otherwise }
\end{array}\right.
$$

Gradient descent

Parámetros (w)

Which surfaces can we learn?

| Structure | Types of
 Decision Regions | Exclusive-OR
 Problem | Classes with
 Meshed regions | Most General
 Region Shapes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Single-Layer | Half Plane
 Bounded By
 Hyperplane | A | | |

Expressive Capabilities of ANN

- With one hidden layer, it is possible to represent any boolean function or any continuous function
- With two hidden layers, it is possible to represent non continuous functions
- More complex problems... Deep learning

Overfitting!!!

- With sufficient nodes can classify any training set exactly
- May have poor generalisation ability.

Evaluation

- How do the models generalize??

Training/test

- 1 data split
- Tipically 80\% for training. 20\% for testing
- OK if we have enough dat
- Otherwise, be careful with bias

Bootstrap

Cross validation

Meta Validation

- What to do if h functions require any parameter?
- We test several parameters and select the best
- How?

Evaluation

Automatic image
labelling

plane			，	\cdots		2			
automobile	0		L				國		
bird	成		N	－		5	\checkmark		
cat	，		4	－		S			
deer	48 m		Ar		9	¢	\％		
dog	\％ 0			5	1	9	C．		
frog	5		5				，		
horse	－		\cdots		，	空	－		
ship	준ㅈ％				E	2	0		
truck							1		

[^0]

Object recognition

Example of Object Detection With Faster R-CNN on the MS COCO Dataset

Image reconstruction

Style transfer

Medical Diagnosis

- Treatment recomendation
- Recognition of cancerous cells
- Identification of features related to a disease

References

Tom Mitchell. Machine Learning. McGraw-Hill
Ethem Alpaydin. Introduction to machine learning. The MIT Press
Christopher Bishop. Pattern recognition and machine learning. Springer

[^0]:

